Question #239950
If a consumer's objective function is given by U=X1X2, subject P1X1+P2X2=M established the demand function for X1 and X2 that maximize the consumer satisfaction
1
Expert's answer
2021-09-23T09:14:02-0400

Consumer get maximum satisfaction when his/her utility maximize

Given

U=X1X2,subjectP1X1+P2X2=MU=X_1X_2, \\subject \\P_1X_1+P_2X_2=M

Using langrarian we can maximize utility

L=X1X2+λ[MP1X1P2X2]δLδX1=X2λP1=0.....(1)δLδX2=X1λP2=0.....(2)δLδλ=MP1X1P2X2=0.....(3)L=X_1X_2+\lambda[M-P_1X_1-P_2X_2] \\\frac{\delta L}{\delta X_1}=X_2-\lambda P_1=0.....(1)\\ \frac{\delta L}{\delta X_2}=X_1-\lambda P_2=0.....(2)\\ \frac{\delta L}{\delta \lambda}=M-P_1X_1-P_2X_2=0.....(3)


Divide equition 1 by 2

X2X1=λP1λP2=X2X1=P1P2P2X2=P1X1\frac{X_2}{X_1}=\frac{\lambda P_1}{\lambda P_2}=\frac{X_2}{X_1}=\frac{P_1}{P_2}\\P_2X_2=P_1X_1 Put in equition 3


M=P1X1+P2X2M=P1X1+P1X1M=P_1X_1+P_2X_2\\M=P_1X_1+P_1X_1

Therefore the demand of X1 and X2 that will maximize consumer satisfaction will be

X1=M2P1X2=M2P2X_1=\frac{M}{2P_1}\\X_2=\frac{M}{2P_2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS