Consumer get maximum satisfaction when his/her utility maximize
Given
U=X1X2,subjectP1X1+P2X2=M
Using langrarian we can maximize utility
L=X1X2+λ[M−P1X1−P2X2]δX1δL=X2−λP1=0.....(1)δX2δL=X1−λP2=0.....(2)δλδL=M−P1X1−P2X2=0.....(3)
Divide equition 1 by 2
X1X2=λP2λP1=X1X2=P2P1P2X2=P1X1 Put in equition 3
M=P1X1+P2X2M=P1X1+P1X1
Therefore the demand of X1 and X2 that will maximize consumer satisfaction will be
X1=2P1MX2=2P2M
Comments