Consumer get maximum satisfaction when his/her utility maximize
Given
"U=X_1X_2, \\\\subject \\\\P_1X_1+P_2X_2=M"
Using langrarian we can maximize utility
"L=X_1X_2+\\lambda[M-P_1X_1-P_2X_2]\n\\\\\\frac{\\delta L}{\\delta X_1}=X_2-\\lambda P_1=0.....(1)\\\\\n\\frac{\\delta L}{\\delta X_2}=X_1-\\lambda P_2=0.....(2)\\\\\n\n\\frac{\\delta L}{\\delta \\lambda}=M-P_1X_1-P_2X_2=0.....(3)"
Divide equition 1 by 2
"\\frac{X_2}{X_1}=\\frac{\\lambda P_1}{\\lambda P_2}=\\frac{X_2}{X_1}=\\frac{P_1}{P_2}\\\\P_2X_2=P_1X_1" Put in equition 3
"M=P_1X_1+P_2X_2\\\\M=P_1X_1+P_1X_1"
Therefore the demand of X1 and X2 that will maximize consumer satisfaction will be
"X_1=\\frac{M}{2P_1}\\\\X_2=\\frac{M}{2P_2}"
Comments
Leave a comment