I.
Under third degree price discrimination sellers charge different prices to difference consumer groups
MC = 2
TC = 2Q
Market One
Q"_{1}" = 20 - 5P"_{1}"
"P_{1} = \n\n\u200b" 4 - "\\frac{Q_{1}}{5} \n\u200b"
TR = 4"Q_{1} \n\u200b" - "\\frac{Q_{1}^{2}}{5}"
Differentiating the TR with respect to Q we get MR
MR = 4 - "\\frac{2Q_{1}}{5}"
mc = 2
Equating MR = MC
"4 - \\frac{2Q_{1}}{5} = 2" solving this we get
"Q_{1} = 5\n\u200b"
substituting "Q_{1} = 5" into "P_{1} \n\u200b\n =\u200b 4 - \\frac{Q_{1}}{5} \n\u200b"
we get "P_{1}" = 4
substituting quantity we get actual TR
TR = "4Q_{1} -""\\frac{Q_{1}^{2}}{5}"
TR = 4 "\\times" 5 - "\\frac{5\\times 5}{5}"
TR= 15
TC = 2Q
TC = 2 "\\times" 5
TC = 10
Hence economic profit = 15 - 10 = 5
market two
"Q_{2} = 20 - 2P_{2} \n\n\u200b"
"P_{2} =\u200b \u200b10 -\\frac{Q_{2}}{2} \n\u200b"
"TR = 10Q_{2} - \\frac{Q_{2}^{2}}{2}"
Differentiating the TR with respect to Q we get MR
"MR = 10 - Q_{2}"
MR = MC
"10\u2212Q_{2} = 2"
"Q_{2} = 8"
"P_{2} =\u200b \u200b10 -\\frac{Q_{2}}{2} \n\u200b\n\u200b\n \n\u200b\n \u200b"
"P_{2} =\u200b \u200b10 -\\frac{8}{2}\n\u200b"
"P_{2} =\u200b 6"
Economic profit
"TR = 10Q_{2} - \\frac{Q_{2}^{2}}{2}" but "Q_{2} = 8"
Therefore TR = 48
TC = 2Q but "Q_{2} = 8"
TC = 16
Economic profit = 48 - 16 = 32
ii.
"Q_{1} = 20 - 5P_{1}"
"Q_{2} = 20 - 2P_{2} \n \u200b"
Price is the same
Quantity to be used will be the same
Average quantity in both of the markets
Q = "20 - 5P_{1}" + "20 - 2P_{2}"
Q = "\\frac{(20 - 5P + 20\u22125P ) }{2} \n\n\u200b"
Q = 40 - 3.5P
P = 11.4 - 0.3Q
TR = 11.4Q - 0.3"Q^{2}"
MR = 11.4 - 0.6Q
MC = 2
MR = MC
11.4 - 0.6Q =2
Q = 15.7 units
P = 11.4 - 0.3Q but q = 15.7
P = 11.4 - 0.3"\\times 15.7"
P = 6.7
Economic profit
TR = 11.4Q - 0.3"Q^{2}" but q = 15.7
TR = 105
TC = 2 Q
TC = 31.4
ECONOMIC PROFIT = 105 - 31.4
= 73.6
Comments
Leave a comment