Question #235560

The utility function of Master Enterprise is

U (T, M) =   T1/4   M3/4

Where T and M are the two goods that the Enterprise sells. The owner of the Enterprise is interested in finding out the demand function of its product. Help him:

  • Find the demand function for Good T and Good M.
  • Use an Income of $8000 and the Price of Good T as $5.00 while the price of Good M as $12 to find the optimum bundles of Good T and M.
1
Expert's answer
2021-09-15T17:06:56-0400

a)U(T,M)=T(14)M(34)MUT=14T(34)M(34)MUM=34T(14)M(14)MRSTM=14T(34)M(34)34T(14)M(14)MRSTM=13T1M1MRSTM=M3TAt equilibriumMRS=PTPMM3T=PTPMM=PTPM×3TThe budget equitionPT×T+PM×M=IPT×T+PM×M×PTPM×3T=IPT×T+3PT×T=I4PT×T=IT=I4PTM=PTPM×3×14PT=3I4PMtherefore the demand equitionarefor good TT=I4PTFor good MM=3I4PMb)I=PT×T+PM×M8000=5T+12MAt equilibriumMUTMUM=PTPMM3T=51212M=15TM=15T128000=5T+12×15T128000=20TT=400M=15×40012M=500a)\\U(T,M)=T^{(\frac{1}{4})}M^{(\frac{3}{4})}\\MU_T=\frac{1}{4}T^{(−\frac{3}{4})}M^{(\frac{3}{4})}\\MU_M=\frac{3}{4}T^{(\frac{1}{4})}M^{(−\frac{1}{4})}\\MRS_{TM}=\frac{\frac{1}{4}T^{(\frac{−3}{4})}M^{(\frac{3}{4})}}{\frac{3}{4}T^{(\frac{1}{4})}M^{(\frac{−1}{4})}}\\MRS_{TM}=\frac{1}{3}T^{−1}M^{1}\\MRS_{TM}=\frac{M}{3T}\\At \space equilibrium\\MRS=\frac{P_T}{P_M}\\\frac{M}{3T}=\frac{P_T}{P_M}\\M=\frac{P_T}{P_M}\times 3T\\The\space budget\space equition\\P_T\times T+P_M\times M=I\\P_T\times T+P_M\times M\times \frac{P_T}{P_M}\times 3T=I\\P_T\times T+3P_T\times T=I\\4P_T\times T=I\\T=\frac{I}{4P_T}\\M=\frac{P_T}{P_M}\times 3\times \frac{1}{4P_T}=\frac{3I}{4P_M}\\ therefore \space the\space demand \space equition are\\for \space good \space T\\T=\frac{I}{4P_T}\\For \space good\space M\\M=\frac{3I}{4P_M}\\ b)\\I=P_T×T+P_M×M\\8000=5T+12M\\At\space equilibrium\\\frac{MU_T}{MU_M}=\frac{P_T}{P_M}\\\frac{M}{3T}=\frac{5}{12}\\12M=15T\\M=\frac{15T}{12}\\8000=5T+12×\frac{15T}{12}\\8000=20T\\T=400\\M=\frac{15×400}{12}\\M=500



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS