Question #230958

1.    Maximize utility U(x, y, z) = 24yz +16xy +16xz

Subject to G (x, y, z) = xyz= 384


1
Expert's answer
2021-08-30T14:35:34-0400

Given

U=24yz+16xy+16xzG=xyz=384U = 24yz +16xy +16xz\\ G = xyz= 384


L=24yz+16xy+16xzλ(384xyz)L=24yz+16xy+16xz\lambda(384-xyz)

δLδx=16y+16zλyz=0δLδx=24z+16xλxz=0δLδz=24y+16xλxy=0δLδλ=384xyz=0\frac{\delta L}{\delta x}=16y+16z-\lambda yz=0\\ \frac{\delta L}{\delta x}=24z+16x-\lambda xz=0\\ \frac{\delta L}{\delta z}=24y+16x-\lambda xy=0\\ \frac{\delta L}{\delta \lambda }=384-xyz=0


λ=16y+16zyz,λ=24z+16xxz,λ=24y+16xxy\lambda=\frac{16y+16z}{yz},\lambda=\frac{24z+16x}{xz},\lambda=\frac{24y+16x}{xy}

16y+16zyz=24z+16xxz=2x=3y\frac{16y+16z}{yz}=\frac{24z+16x}{xz}\\=2x=3y


24z+16xxz=24y+16xxy=y=z\frac{24z+16x}{xz}=\frac{24y+16x}{xy}\\=y=z

xyz=3843yz.y.y=384=y3=128×2=256y=6.3496x=9.5244z=6.3496xyz=384\\\frac{3y}{z}.y.y=384=y^3=128×2=256\\y=6.3496\\x=9.5244\\z=6.3496

Umax=24(6.3496)2+16(9.5244×6.3496)+16(9.5244×6.3496)=6.3496(24×6.3496+32×9.5244)Umax=2902.0542U_{max}=24(6.3496)^2+16(9.5244×6.3496)+16(9.5244×6.3496)\\=6.3496(24×6.3496+32×9.5244)\\U_{max}=2902.0542


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS