Demand & Supply Schedule Price 8, 5 Quantity Demanded 60, 85 Quantity Supplied 130, 100 Compute the Following: SHOW YOUR SOLUTIONS
1. Demand coefficient of price (b-value) 2. Level of demand independent of price (a-value) 3. Demand Function 4. Supply coefficient of price (d-value) 5. Level of supply independent of price (c-value) 6. Supply Function 7. Equilibrium Price 8. Equilibrium Quantity
Demand Equation: Qd=a-bP
Here, a is the level of demand independent of price, and b is the demand coefficient of price.
Supply Equation: Qs=c+dP
Here, c is the level of supply independent of price and d is the supply coefficient of price
DEMAND
We will use the equation of a line:
"(y-y_1)=[\\frac{(y_2-y_1)}{(x_2-x_1)}]\\times (x-x_1)"
y is the dependent variable=Price
x is the independent variable=Qd
"(P-P_1)=[\\frac{(P_2-P_1)}{(Qd_2-Qd_1)}]\\times(Qd-Qd_1)"
Points:
"(Qd_1,P_1)=(60,8)\\\\\n\n(Qd_2,P_2)=(85,5)"
Putting in the equation:
"(P-8)=[\\frac{(5-8)}{(85-60)}]\\times(Qd-60)\\\\\n\n(P-8)=[-0.12]\\times(Qd-60]\\\\\n\nP=-0.12Qd+7.2+8\\\\\n\nP=15.2-0.12Qd"
So,
(1)
a value=15.2
(2)
b value=-0.12
(3)
Demand Function: "P=15.2-0.12Qd"
(4)
SUPPLY
We will use the equation of a line:
"(y-y_1)=[\\frac{(y_2-y_1)}{(x_2-x_1)}]\\times (x-x_1)"
y is the dependent variable=Price
x is the independent variable=Qs
"(P-P_1)=[\\frac{(P_2-P_1)}{(Qd_2-Qd_1)}]\\times(Qd-Qd_1)"
Points:
"(Qs_1,P_1)=(130,8)\\\\\n\n(Qs_2,P_2)=(100,5)"
Putting in the equation:
"(P-8)=[\\frac{(5-8)}{(100-130)}]\\times(Qs-130)\\\\\n\n(P-8)=[0.1]\\times(Qs-130)\\\\\n\nP=0.1Qs-13+8\\\\\n\nP=-5+0.1Qs"
So,
c value=-5
(5)
d value=0.1
(6)
Supply Function: "P=-5+0.1Qs"
(7)
For equilibrium price and quantity, we will equate Qd and Qs:
"Qs=10P+50\\\\\n\nQd=126.67-8.3P"
Qd=Qs
"126.67-8.33P=10P+50\\\\\n\n-8.33P-10P=50-126.67\\\\\n\n18.33P=76.67\\\\\n\nP=4.18\\\\\n\nQ=91.8"
Equilibrium price=4.18 and equilibrium quantity=91.8
Comments
Leave a comment