complete question:Given utility function U= X0.5Y0.5 where Px= 12 Birr, Bir, Py=4 Birr and the income of
the consumer is, M= 240 Birr.
A. Find the utility maximizing combinations of X and Y.
B. Calculate marginal rate of substitution of X for Y (MRSX.Y) at equilibrium and inierpiet
your result.
solution
A)
"MU_x=0.5 \\frac {y^{0.5}}{x^{0.5}}""MU_y=0.5 \\frac {x^{0.5}}{y^{0.5}}""{\\frac{MU_x}{p_x}}=\\frac {MU_y}{p_y}""x \\times p_x+ y \\times p_y=M""y=3x""12 \\times x+4 \\times y=240""x=10, y=30."B)
"\\frac {\\partial U}{\\partial x \\partial y} =\\frac {0.25} {(xy)^{0.5}}""MRS x.y = \\frac {\\partial U} {\\partial x \\partial y} = \\frac {0.25}{(10 \\times 30)^{0.5}}=0.015"
Comments
Leave a comment