Question #225389
Assume the Cobb-Douglas production function
is Q= L ^0.75 K^0.5 and if price of labor per day is 5 birr and price of capital per day is 10 birr; and if total outlay (cost budget) per day is 400 birr,
A.Find L and K that maximize out put
B.What is the maximum out put the equilibrium L* and K*
1
Expert's answer
2021-08-16T08:47:21-0400

a)

Given 

Q=L0.75K0.5.........(1)Q =L^{0.75} K^{0.5} ......... (1)

Price of labor = 5 birr per day 

Price of capital = 10 birr per day 

Total cost budget = 400 birr per day

Budget line or isocost line 

5L+10K=400......(2)5L+10K=400 ......(2)


Maximize Q=L0.75K0.5Q =L^{0.75} K^{0.5}

Subject to constraints 5L+10K=4005L+10K=400

Using lagrangian method

X=L0.75K0.5+λ(4005L10K)X =L^{0.75} K^{0.5} +λ(400-5L-10K)

FOC

dXdL=0,dXdK=0,dXdλ=0\frac{dX}{dL}=0, \frac{dX}{dK}=0, \frac{dX}{dλ}=0

Differentiating Lagrangian function with respect to L

dXdL=00.75L0.25K0.5=5λ..........(3)NowdXdK=00.5L0.75K0.5=10λ..........(4)anddXdλ=05L+10K=400..........(2)\frac{dX}{dL}=0\\⇒0.75L^{−0.25}K^{0.5}=5λ ..........(3)\\ Now\\ \frac{dX}{dK}=0\\⇒0.5L^{0.75}K^{−0.5}=10λ ..........(4)\\ and \\ \frac{dX}{dλ}=0\\⇒5L+10K=400 ..........(2)

Dividing eq 3 and 4

0.75L0.25K0.50.5L0.75K0.5=5λ10λ3K2L=12K=L3⇒\frac{0.75L^{−0.25}K^{0.5}}{0.5L^{0.75}K^{−0.5}}=\frac{5λ}{10λ}\\⇒\frac{3 K}{2L}=\frac{1}{2}\\⇒K=\frac{L}{3}

Putting value of K in eq 2

5L+10(L3)=40015+103L=400L=400×325L=48And K=483=165L+10(\frac{L}{3}) = 400\\⇒\frac{15+10}{3}L=400\\⇒L=400×\frac{3}{25}\\⇒L=48\\ And\space K = \frac{48}{3} = 16

The optimal level of L is 48 and K is 16 that maximizes the output. 


(b)

Maximum output will be

Q=480.75×160.5Q=72.944Q^*=48^{0.75}×16^{0.5}\\⇒Q^*= 72.944


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS