a)
Given
Q=L0.75K0.5.........(1)
Price of labor = 5 birr per day
Price of capital = 10 birr per day
Total cost budget = 400 birr per day
Budget line or isocost line
5L+10K=400......(2)
Maximize Q=L0.75K0.5
Subject to constraints 5L+10K=400
Using lagrangian method
X=L0.75K0.5+λ(400−5L−10K)
FOC
dLdX=0,dKdX=0,dλdX=0
Differentiating Lagrangian function with respect to L
dLdX=0⇒0.75L−0.25K0.5=5λ..........(3)NowdKdX=0⇒0.5L0.75K−0.5=10λ..........(4)anddλdX=0⇒5L+10K=400..........(2)
Dividing eq 3 and 4
⇒0.5L0.75K−0.50.75L−0.25K0.5=10λ5λ⇒2L3K=21⇒K=3L
Putting value of K in eq 2
5L+10(3L)=400⇒315+10L=400⇒L=400×253⇒L=48And K=348=16
The optimal level of L is 48 and K is 16 that maximizes the output.
(b)
Maximum output will be
Q∗=480.75×160.5⇒Q∗=72.944
Comments