Question #223413

A monopolist sells its product in two isolated markets with demand functions

            P1 = 32 − Q1 and P2 = 40 − 2Q2

The total cost function is TC = 4(Q1 + Q2).

(a) Show that the profit function is given by

       π = 28Q1 + 36Q2 − Q12 − 2Q22

(b) Find the values of Q1 and Q2 which maximise profit and calculate the value of the

maximum profit. Verify that the second-order conditions for a maximum are satisfied


1
Expert's answer
2021-08-05T13:59:11-0400

(A)π=P1×Q1+P2×Q2Cπ=(32Q1)×Q1+(40+2Q2)×Q24×(Q1+Q2)(A)\\\pi=P1\times Q1+P2\times Q2-C\\\pi=(32-Q1)\times Q1+(40+2Q2)\times Q2-4\times (Q1+Q2)

π=32×Q1Q12+40×Q22×Q224×Q14×Q2\pi=32\times Q1-Q12+40\times Q2-2\times Q22-4\times Q1-4 \times Q2\\

π=28×Q1Q12+36×Q22×Q22\pi=28\times Q1-Q12+36\times Q2-2\times Q22

For market 1 we obtain

R1×Q1=p1×q1=(32q1)×q1=32×q1q12R1\times Q1=p1\times q1=(32-q1)\times q1\\=32\times q1-q1^2

and hence 

M×R1=R1×q1=32q1M\times R1=R1'\times q1=32-q1

For market 2 we obtain

R2×Q2=p2×q2=(402×q2)×q2=40×q22×q22R2\times Q2=p2\times q2=(40-2\times q2)\times q2=40\times q2-2\times q2^2

and hence 

M×R2=R2×q2=402×q2M\times R2=R2'\times q2=40-2\times q2

The monopolist will set marginal revenue in each market equal to the (common) marginal cost. Hence, in equilibrium, 

M×R1=32q1=2(q1+q2)=MCM×R2=402×Q2=2(q1+q2)=MCM\times R1=32-q1=2(q1+q2)=M C\\M\times R2=40-2\times Q2=2(q1+q2)=MC

This is an equation system with two equations and two unknown. From the first equation we obtain

32q1=2(q1+q2)32q1=2×q1+2×q232-q1=2(q1+q2)\\32-q1=2\times q1+ 2\times q2

which, solving for q1 in terms of q2, yields

32=3×q1+2×q23×q1=322×q232=3\times q1+2\times q2\\3\times q1=32-2\times q2

q1=322×q23q1=\frac{32-2\times q2}{3}

Using this to replace q1 in the second equation then yields the following equation in q2

402×q2=2(322×q23+q2)40-2\times q2=2(\frac{32-2\times q2}{3}+q2)

402×q2=2(322×q2+3q23)40-2\times q2=2(\frac{32-2\times q2+3q2}{3})

402×q2=644×q2+6×q2340-2\times q2=\frac{64-4\times q2+6\times q2}{3}

1206×q2=64+2×q212064=8×q256=8×q2q2=7120-6\times q2=64+2\times q2\\120-64=8\times q2\\56=8\times q2\\q2=7

Using this equilibrium value to replace q2 in the equation for market 1 we then obtain

q1=322×73=32143=183=6q1=\frac{32-2\times 7}{3}=\frac{32-14}{3}=\frac{18}{3}=6

q1=6q1=6

Hence, the quantities sold by the monopolist will be

q1=6q2=7q1=6\\q2=7


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS