A monopolist sells its product in two isolated markets with demand functions
P1 = 32 − Q1 and P2 = 40 − 2Q2
The total cost function is TC = 4(Q1 + Q2).
(a) Show that the profit function is given by
π = 28Q1 + 36Q2 − Q12 − 2Q22
(b) Find the values of Q1 and Q2 which maximise profit and calculate the value of the
maximum profit. Verify that the second-order conditions for a maximum are satisfied
"(A)\\\\\\pi=P1\\times Q1+P2\\times Q2-C\\\\\\pi=(32-Q1)\\times Q1+(40+2Q2)\\times Q2-4\\times (Q1+Q2)"
"\\pi=32\\times Q1-Q12+40\\times Q2-2\\times Q22-4\\times Q1-4 \\times Q2\\\\"
"\\pi=28\\times Q1-Q12+36\\times Q2-2\\times Q22"
For market 1 we obtain
"R1\\times Q1=p1\\times q1=(32-q1)\\times q1\\\\=32\\times q1-q1^2"
and hence
"M\\times R1=R1'\\times q1=32-q1"
For market 2 we obtain
"R2\\times Q2=p2\\times q2=(40-2\\times q2)\\times q2=40\\times q2-2\\times q2^2"
and hence
"M\\times R2=R2'\\times q2=40-2\\times q2"
The monopolist will set marginal revenue in each market equal to the (common) marginal cost. Hence, in equilibrium,
"M\\times R1=32-q1=2(q1+q2)=M C\\\\M\\times R2=40-2\\times Q2=2(q1+q2)=MC"
This is an equation system with two equations and two unknown. From the first equation we obtain
"32-q1=2(q1+q2)\\\\32-q1=2\\times q1+ 2\\times q2"
which, solving for q1 in terms of q2, yields
"32=3\\times q1+2\\times q2\\\\3\\times q1=32-2\\times q2"
"q1=\\frac{32-2\\times q2}{3}"
Using this to replace q1 in the second equation then yields the following equation in q2
"40-2\\times q2=2(\\frac{32-2\\times q2}{3}+q2)"
"40-2\\times q2=2(\\frac{32-2\\times q2+3q2}{3})"
"40-2\\times q2=\\frac{64-4\\times q2+6\\times q2}{3}"
"120-6\\times q2=64+2\\times q2\\\\120-64=8\\times q2\\\\56=8\\times q2\\\\q2=7"
Using this equilibrium value to replace q2 in the equation for market 1 we then obtain
"q1=\\frac{32-2\\times 7}{3}=\\frac{32-14}{3}=\\frac{18}{3}=6"
"q1=6"
Hence, the quantities sold by the monopolist will be
"q1=6\\\\q2=7"
Comments
Leave a comment