(A)π=P1×Q1+P2×Q2−Cπ=(32−Q1)×Q1+(40+2Q2)×Q2−4×(Q1+Q2)
π=32×Q1−Q12+40×Q2−2×Q22−4×Q1−4×Q2
π=28×Q1−Q12+36×Q2−2×Q22
For market 1 we obtain
R1×Q1=p1×q1=(32−q1)×q1=32×q1−q12
and hence
M×R1=R1′×q1=32−q1
For market 2 we obtain
R2×Q2=p2×q2=(40−2×q2)×q2=40×q2−2×q22
and hence
M×R2=R2′×q2=40−2×q2
The monopolist will set marginal revenue in each market equal to the (common) marginal cost. Hence, in equilibrium,
M×R1=32−q1=2(q1+q2)=MCM×R2=40−2×Q2=2(q1+q2)=MC
This is an equation system with two equations and two unknown. From the first equation we obtain
32−q1=2(q1+q2)32−q1=2×q1+2×q2
which, solving for q1 in terms of q2, yields
32=3×q1+2×q23×q1=32−2×q2
q1=332−2×q2
Using this to replace q1 in the second equation then yields the following equation in q2
40−2×q2=2(332−2×q2+q2)
40−2×q2=2(332−2×q2+3q2)
40−2×q2=364−4×q2+6×q2
120−6×q2=64+2×q2120−64=8×q256=8×q2q2=7
Using this equilibrium value to replace q2 in the equation for market 1 we then obtain
q1=332−2×7=332−14=318=6
q1=6
Hence, the quantities sold by the monopolist will be
q1=6q2=7
Comments