Solution:
a.). Profit function = TR – TC
TR = P "\\times" Q
TR for product 1 = (32 – Q1) Q1 = 32Q1 – Q12
TR for product 2 = (40 – 2Q2) Q2 = 40Q2 – 2Q22
TC = 4(Q1 + Q2) = 4Q1 + 4Q2
Profit function = TR – TC
Profit function = (32Q1 – Q12 + 40Q2 – 2Q22) – (4Q1 + 4Q2))
Profit function = 28Q1 – Q12 + 36Q2 – 2Q22
Profit function = 28Q1 + 36Q2 – Q12 – 2Q22
b.). Profit maximizing function = 28Q1 + 36Q2 – Q12 – 2Q22
Derive profit maximizing output for Q1 and Q2:
"\\frac{\\partial \\pi } {\\partial Q1}" = πQ1 = 28 – 2Q1= 0
"\\frac{\\partial \\pi } {\\partial Q2}" = πQ2 = πQ2 = 36 – 4Q2 = 0
Value for Q1:
28 – 2Q1= 0
28 = 2Q1
Q1 = 14
Value for Q2:
36 – 4Q2= 0
36 = 4Q2
Check second order conditions for maximum:
πQ1 = 28 – 2Q1
πQ2 = 36 – 4Q2
πQ1Q2 = 2
The second partial derivatives have to be negative:
πQ1Q1 = -2 < 0
πQ2Q2 = -4 < 0
πQ1Q2 = 2
The multiplication of the two-second partial derivatives must be greater than cross partial derivatives squared.
πQ1Q1πQ2Q2 > (πQ1Q2)2
(-2)(-4) > (2)2
8 > 4
Comments
Leave a comment