Solution:
Utility function U(x,y) = xy + x + 2y
The utility-maximizing condition: "MRS = \\frac{MUx}{MUy} = \\frac{Px}{Py}"
First, derive MRS:
MRS = "\\frac{MUx}{MUy}"
MUx = "\\frac{\\partial U} {\\partial X} = y + 2y = 3y"
MUy = "\\frac{\\partial U} {\\partial Y} = x + x = 2x"
MRS = "\\frac{MUx}{MUy} = \\frac{3y}{2x}"
Set MRS equal to "\\frac{Px}{Py}" to derive the utility-maximizing bundle:
Px = 2
Py = 5
"\\frac{3y}{2x} = \\frac{2}{5}"
15y = 4x
y = "\\frac{4x}{15}"
Plug Y into the budget constraint to derive X:
Budget constraint: M = PxX + PyY
51 = 2X + 5Y
51 = 2X + 5("\\frac{4x}{15})"
51 = 2X + "\\frac{20x}{15}"
51 = 2X + "\\frac{4x}{3}"
Multiple both sides by 3:
153 = 6X + 4X
153 = 10X
X = 15.3
Plug this into Y equation:
Y = "\\frac{4x}{15} = \\frac{(4\\times 15.3)}{15} = \\frac{61.2}{15} = 4.08"
Y = 4.08
Utility maximizing bundle (Ux,y) = (15.3, 4.08)
Comments
Leave a comment