Question #222506
Maximize U(x,y)=xy+x+2y subjected to Px=,Py=5 and M=51
1
Expert's answer
2021-08-02T11:04:30-0400

Solution:

Utility function U(x,y) = xy + x + 2y

The utility-maximizing condition: MUxMUy=PxPy\frac{MUx}{MUy} = \frac{Px}{Py}


First, derive MRS:

MRS = MUxMUy\frac{MUx}{MUy}


MUx = UX=y+2y=3y\frac{\partial U} {\partial X} = y + 2y = 3y


MUy = UY=x+x=2x\frac{\partial U} {\partial Y} = x + x = 2x


MRS = MUxMUy=3y2x\frac{MUx}{MUy} = \frac{3y}{2x}


Set MRS equal to PxPy\frac{Px}{Py} to derive the utility-maximizing bundle:

Px = 2

Py = 5

3y2x=25\frac{3y}{2x} = \frac{2}{5}


y = 4x15\frac{4x}{15}


Plug Y into the budget constraint to derive X:

Budget constraint: M = PxX + PyY

51 = 2X + 5Y

51 = 2X + 5(4x15)\frac{4x}{15})


51 = 2X + 20x15\frac{20x}{15}


51 = 2X + 4x3\frac{4x}{3}

Multiple all sides by 3

153 = 6X + 4X

153 = 10X

X = 15.3

Plug this into Y equation:

Y = 4x15=(4×15.3)15=61.215=4.08\frac{4x}{15} = \frac{(4\times 15.3)}{15} = \frac{61.2}{15} = 4.08

Y = 4.08


Utility maximizing bundle (Ux,y) = (15.3, 4.08) 



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS