Question #221778

Suppose that the utility function for two commodities is:

U(q1, q2) = q1α q2(1-α)

Let the prices of the two commodities be p1 and p2 and let the consumer’s income be M.

(1) Check the properties of marginal utilities. In particular, check whether it satisfies diminishing marginal utilities.

(2) Assuming all income is spent on these two commodities, derive the demand curves for the two commodities.

(3) What happens if U(q1, q2) = q1α q2β?


1
Expert's answer
2021-08-02T08:33:36-0400

marginal utility(MU) is the addition to the total utility when an additional unit of a good is consumed. The law of diminishing marginal utility states that when more and more units of one good are consumed, the marginal utility from each successive unit declines. 

The marginal utility of good q1 is the derivative of total utility with respect to q1. The marginal utility of good q2 is the derivative of total utility with respect to q2.


1)U(q1,q2)=q1αq2(1α)MUq1=U(q1,q2)q1=αq2(1α)q1(1α)MUq2=U(q1,q2)q2=(1α)q1αq2α1)\\ U(q_1,q_2) =q_1^αq_2^{(1-α)}\\MUq_1=\frac{∂U(q_1,q_2)}{∂q_1}\\=α\frac{q_2^{(1-α)}}{q_1^{(1-α)}}\\MUq_2=\frac{∂U(q_1,q_2)}{∂q_2}\\=(1-α)\frac{q_1^α}{q_2^α}

The marginal utility is diminishing because the quantity is in the denominator. So, the marginal utility of q1 decreases with the increase in q1. The marginal utility of q2 decreases with the increase in q2


2)

A consumer consumes where its utility is maximized. The consumer maximizes its utility where the marginal rate of substitution(MRS) is equal to the price ratio. The marginal rate of substitution is the ratio of marginal utility of good 1 to the marginal utility of good 2. 


MRS=αq2(1α)q1(1α)(1α)q1αq2αMRS=\frac{\frac{αq_2^{(1−α)}}{q_1^{(1−α)}}}{\frac{(1−α)q_1^α}{q_2^α}}

=αq2(1α)q1=\frac{αq_2}{(1−α)q_1}


MRS=p1P2αq2(1α)q1=p1P2MRS=\frac{p_1}{P_2}\\\frac{αq_2}{(1−α)q_1}=\frac{p_1}{P_2}

q2=(1α)q1p1αp2q_2=\frac{(1−α)q_1p_1}{αp_2}

Budget constraint

p1q1+p2q2=Mp_1q_1 +p_2q_2=M

p1q1+p2((1α)q1p1αp2)=Mp_1q_1 +p_2(\frac{(1−α)q_1p_1}{αp_2})=M

p1q1+(1α)q1p1α=Mp_1q_1 +\frac{(1−α)q_1p_1}{α}=M

p1q1(1+1α)α=Mp_1q_1 \frac{(1+1−α)}{α}=M

q1=α×Mp1q_1=\frac{α×M}{p_1} ...demand function for q1

q2=(1α)p1(α×Mp1)αp2q_2=\frac{(1−α)p_1(\frac{α×M}{p_1})}{αp_2}

=(1α)×Mp2=\frac{(1−α)×M}{p_2} ...demand function for q2


3)

As the power of q2 changes from 1α to β1-α\space to\space β , the demand function of q2. The demand function of q1 remains the same.

q2=β×Ip2q_2 =\frac{β×I}{p_2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS