Question #221312

1.     Assume the following for price discriminating monopolist aimed at maximizing profit. Total demand for the product of the monopolist is Q = 50-5P (P = 100-2Q)

·        Demand in Market one is Q1= 32-0.4P1(P1= 80-2.5Q1)

·        Demand in Market two is Q2= 18-0.1P2(P2= 180-10Q2)

·        Cost function is C = 50+40Q (where Q = Q1+ Q2)

a.      Find equilibrium quantities (Q1and Q2),

b.     Find equilibrium prices (P1and P2),

c.      Calculate profit (π),

d.     Calculate and Interpret elasticities (ε1 and ε2)



1
Expert's answer
2021-07-30T01:27:24-0400

a.

Total revenue in market 1

=80Q12.5Q12= 80Q_1 - 2.5 Q_1^2

Marginal revenue in market 1

=TRQ1=805Q1MC=40805Q1=4040=5Q1Q1=8=\frac{ ∆TR}{ ∆ Q_1}\\ = 80 - 5 Q_1 \\ MC = 40 \\ 80 - 5 Q_1 = 40 \\ 40 = 5 Q_1 \\ Q_1 = 8


Total revenue 2

=P×Q=180Q210Q22= P × Q = 180Q_2 - 10 Q_2^2

Marginal revenue 2

 =18020Q2MC=40Equating MR=MC18020Q2=40140=20Q2Q2=7= 180 - 20 Q_2 \\ MC = 40 \\ Equating \space MR = MC \\ 180 - 20 Q_2 = 40 \\ 140 = 20 Q2 \\ Q_2 = 7 \\


b.

P1=802.5(8)=60P2=18010Q2=110P_1 = 80 - 2.5 (8) = 60\\ P_2 = 180-10Q_2 = 110


c.

Profit=TR1+TR2TC=8(60)+7(110)5040(15)=480+77050600=600Profit = TR_ 1 + TR_ 2 - TC \\ = 8(60) + 7(110) - 50 - 40(15) \\ = 480 + 770 - 50 - 600\\ = 600


d.

Q1=320.4P1Q1P1=0.4e=Q1P1×P1Q1e=0.4×(608)=3Q2=180.1P2Q2P2=0.1e=Q2P2×P2Q2=0.1(1107)=1.57Q_1= 32-0.4P_1 \\ \frac{∆Q_1}{∆P_1 }= - 0.4 \\ e = \frac{∆Q_1 }{ ∆ P_1} \times \frac{ P _1 }{Q _1}\\ e = -0.4 \times (\frac{60 }{ 8}) = - 3\\ Q_2= 18-0.1P_2 \\ \frac{∆Q2}{ ∆ P_2 }= -0.1 \\ e =\frac{ ∆Q2 }{∆ P_2 }\times \frac{P_2 }{Q _2}= -0.1(\frac{110}{7}) = -1.57


Good 2 is less price elastic. 

A higher price is charged to the low elasticity segment and a lower price is charged to the high elasticity segment.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS