Cobb Douglass Utility Function: "U=X_1^{\\frac{1}{2}}X_2^{\\frac{1}{2}}"
Budget Constraint: "M=P_1X_1+P_2X_2"
Marginal Utility is the utility derived by an additional consumption of a unit of a good.
Marginal Utility of X1:
"MU_{X_1}=\\frac{\\delta U}{\\delta X_1}\\\\\n\nMU_{X_1}=\\frac{dU}{dX_1}\\\\\n\nU=X_1^{\\frac{1}{2}}X_2^{\\frac{1}{2}}\\\\\n\n\\frac{dU}{dX_1}=\\frac{1}{2}X_1^{\\frac{-1}{2}}X_2^{\\frac{1}{2}}\\\\\n\n\\frac{dU}{dX_1}=\\frac{1}{2}(\\frac{X_2}{X_1})^{\\frac{1}{2}}"
So, the Marginal Utility of X1 is "\\frac{1}{2}(\\frac{X_2}{X_1})^{\\frac{1}{2}}"
Similarly, we can find the marginal utility of X2:
"MU_{X2}=\\frac{\\delta U}{\\delta X2}\\\\\n\nMU_{X2}=\\frac{dU}{dX2}\\\\\n\nU=X1^{\\frac{1}{2}}X2^{\\frac{1}{2}}\\\\\n\n\\frac{dU}{dX2}=\\frac{1}{2}X1^{\\frac{1}{2}}X2^{\\frac{-1}{2}}\\\\\n\n\\frac{dU}{dX2}=\\frac{1}{2}(\\frac{X1}{X2})^{\\frac{1}{2}}"
So, Marginal Utility of X1 is "\\frac{1}{2}(\\frac{X1}{X2})^{\\frac{1}{2}}"
For quantity demand, we need the following condition:
"\\frac{MU_{X_1}}{MU_{X_2}}=\\frac{P_1}{P_2}\\\\\n\n\\frac{\\frac{1}{2}(\\frac{X_2}{X_1})^{\\frac{1}{2}}}{ \\frac{1}{2}(\\frac{X_1}{X_2})^\\frac{1}{2}}= \\frac{P_1}{P_2}"
Simplifying the above expression, we get
"\\frac{X_2}{X_1}=\\frac{P_1}{P_2}\\\\\n\nP_1X_1=P_2X_2"
Putting this in the budget constraint
Budget Constraint: "M=P_1X_1+P_2X_2"
"P_1X_1+P_2X_2=M\\\\\n\nSince\\space P_1X_1=P_2X_2\\\\\n\nP_1X_1+P_1X_1=M\\\\\n\n2P_1X_1=M\\\\\n\nX_1=\\frac{M}{2P_1}"
So, the demand for X1 is"X_1=\\frac{M}{2P_1}"
We will substitute the value of X1 in "P_1X_1=P_2X_2" to find out the demand for X2
"P_1X_1=P_2X_2\\\\\n\nX_2=(\\frac{P_1}{P_2})\\times X_1"
Putting the value of "X_1=\\frac{M}{2P_1}"
"X_2=(\\frac{P_1}{P_2})\\times(\\frac{M}{2P_1})\\\\\n\nX_2=\\frac{M}{2P_2}"
So, the demand for X2 is "X_2=\\frac{M}{2P_2}"
Quantity demanded of good "1+2: X_1+X_2"
"X_1+X_2=(\\frac{M}{2P_1})+(\\frac{M}{2P_2})"
Comments
Leave a comment