Answer to Question #221188 in Microeconomics for Vickie

Question #221188
Given the following Cobb Douglas utility function U(X1,X2)=(Xa1,x1-a 2) derive the marginal utilities for good X1 and good x to derive the marginal rate of substitution
1
Expert's answer
2021-08-02T15:49:18-0400

Cobb Douglass Utility Function: U=X112X212U=X_1^{\frac{1}{2}}X_2^{\frac{1}{2}}

Budget Constraint: M=P1X1+P2X2M=P_1X_1+P_2X_2

Marginal Utility is the utility derived by an additional consumption of a unit of a good.

 

Marginal Utility of X1:

MUX1=δUδX1MUX1=dUdX1U=X112X212dUdX1=12X112X212dUdX1=12(X2X1)12MU_{X_1}=\frac{\delta U}{\delta X_1}\\ MU_{X_1}=\frac{dU}{dX_1}\\ U=X_1^{\frac{1}{2}}X_2^{\frac{1}{2}}\\ \frac{dU}{dX_1}=\frac{1}{2}X_1^{\frac{-1}{2}}X_2^{\frac{1}{2}}\\ \frac{dU}{dX_1}=\frac{1}{2}(\frac{X_2}{X_1})^{\frac{1}{2}}

So, the Marginal Utility of X1 is 12(X2X1)12\frac{1}{2}(\frac{X_2}{X_1})^{\frac{1}{2}}

 

Similarly, we can find the marginal utility of X2:

MUX2=δUδX2MUX2=dUdX2U=X112X212dUdX2=12X112X212dUdX2=12(X1X2)12MU_{X2}=\frac{\delta U}{\delta X2}\\ MU_{X2}=\frac{dU}{dX2}\\ U=X1^{\frac{1}{2}}X2^{\frac{1}{2}}\\ \frac{dU}{dX2}=\frac{1}{2}X1^{\frac{1}{2}}X2^{\frac{-1}{2}}\\ \frac{dU}{dX2}=\frac{1}{2}(\frac{X1}{X2})^{\frac{1}{2}}

So, Marginal Utility of X1 is 12(X1X2)12\frac{1}{2}(\frac{X1}{X2})^{\frac{1}{2}}


For quantity demand, we need the following condition:

MUX1MUX2=P1P212(X2X1)1212(X1X2)12=P1P2\frac{MU_{X_1}}{MU_{X_2}}=\frac{P_1}{P_2}\\ \frac{\frac{1}{2}(\frac{X_2}{X_1})^{\frac{1}{2}}}{ \frac{1}{2}(\frac{X_1}{X_2})^\frac{1}{2}}= \frac{P_1}{P_2}

Simplifying the above expression, we get

X2X1=P1P2P1X1=P2X2\frac{X_2}{X_1}=\frac{P_1}{P_2}\\ P_1X_1=P_2X_2

Putting this in the budget constraint

Budget Constraint: M=P1X1+P2X2M=P_1X_1+P_2X_2

P1X1+P2X2=MSince P1X1=P2X2P1X1+P1X1=M2P1X1=MX1=M2P1P_1X_1+P_2X_2=M\\ Since\space P_1X_1=P_2X_2\\ P_1X_1+P_1X_1=M\\ 2P_1X_1=M\\ X_1=\frac{M}{2P_1}

So, the demand for X1 isX1=M2P1X_1=\frac{M}{2P_1}

 

We will substitute the value of X1 in P1X1=P2X2P_1X_1=P_2X_2 to find out the demand for X2

P1X1=P2X2X2=(P1P2)×X1P_1X_1=P_2X_2\\ X_2=(\frac{P_1}{P_2})\times X_1

Putting the value of X1=M2P1X_1=\frac{M}{2P_1}

X2=(P1P2)×(M2P1)X2=M2P2X_2=(\frac{P_1}{P_2})\times(\frac{M}{2P_1})\\ X_2=\frac{M}{2P_2}

So, the demand for X2 is X2=M2P2X_2=\frac{M}{2P_2}

Quantity demanded of good 1+2:X1+X21+2: X_1+X_2

X1+X2=(M2P1)+(M2P2)X_1+X_2=(\frac{M}{2P_1})+(\frac{M}{2P_2})




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment