Answer to Question #221188 in Microeconomics for Vickie

Question #221188
Given the following Cobb Douglas utility function U(X1,X2)=(Xa1,x1-a 2) derive the marginal utilities for good X1 and good x to derive the marginal rate of substitution
1
Expert's answer
2021-08-02T15:49:18-0400

Cobb Douglass Utility Function: "U=X_1^{\\frac{1}{2}}X_2^{\\frac{1}{2}}"

Budget Constraint: "M=P_1X_1+P_2X_2"

Marginal Utility is the utility derived by an additional consumption of a unit of a good.

 

Marginal Utility of X1:

"MU_{X_1}=\\frac{\\delta U}{\\delta X_1}\\\\\n\nMU_{X_1}=\\frac{dU}{dX_1}\\\\\n\nU=X_1^{\\frac{1}{2}}X_2^{\\frac{1}{2}}\\\\\n\n\\frac{dU}{dX_1}=\\frac{1}{2}X_1^{\\frac{-1}{2}}X_2^{\\frac{1}{2}}\\\\\n\n\\frac{dU}{dX_1}=\\frac{1}{2}(\\frac{X_2}{X_1})^{\\frac{1}{2}}"

So, the Marginal Utility of X1 is "\\frac{1}{2}(\\frac{X_2}{X_1})^{\\frac{1}{2}}"

 

Similarly, we can find the marginal utility of X2:

"MU_{X2}=\\frac{\\delta U}{\\delta X2}\\\\\n\nMU_{X2}=\\frac{dU}{dX2}\\\\\n\nU=X1^{\\frac{1}{2}}X2^{\\frac{1}{2}}\\\\\n\n\\frac{dU}{dX2}=\\frac{1}{2}X1^{\\frac{1}{2}}X2^{\\frac{-1}{2}}\\\\\n\n\\frac{dU}{dX2}=\\frac{1}{2}(\\frac{X1}{X2})^{\\frac{1}{2}}"

So, Marginal Utility of X1 is "\\frac{1}{2}(\\frac{X1}{X2})^{\\frac{1}{2}}"


For quantity demand, we need the following condition:

"\\frac{MU_{X_1}}{MU_{X_2}}=\\frac{P_1}{P_2}\\\\\n\n\\frac{\\frac{1}{2}(\\frac{X_2}{X_1})^{\\frac{1}{2}}}{ \\frac{1}{2}(\\frac{X_1}{X_2})^\\frac{1}{2}}= \\frac{P_1}{P_2}"

Simplifying the above expression, we get

"\\frac{X_2}{X_1}=\\frac{P_1}{P_2}\\\\\n\nP_1X_1=P_2X_2"

Putting this in the budget constraint

Budget Constraint: "M=P_1X_1+P_2X_2"

"P_1X_1+P_2X_2=M\\\\\n\nSince\\space P_1X_1=P_2X_2\\\\\n\nP_1X_1+P_1X_1=M\\\\\n\n2P_1X_1=M\\\\\n\nX_1=\\frac{M}{2P_1}"

So, the demand for X1 is"X_1=\\frac{M}{2P_1}"

 

We will substitute the value of X1 in "P_1X_1=P_2X_2" to find out the demand for X2

"P_1X_1=P_2X_2\\\\\n\nX_2=(\\frac{P_1}{P_2})\\times X_1"

Putting the value of "X_1=\\frac{M}{2P_1}"

"X_2=(\\frac{P_1}{P_2})\\times(\\frac{M}{2P_1})\\\\\n\nX_2=\\frac{M}{2P_2}"

So, the demand for X2 is "X_2=\\frac{M}{2P_2}"

Quantity demanded of good "1+2: X_1+X_2"

"X_1+X_2=(\\frac{M}{2P_1})+(\\frac{M}{2P_2})"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS