For the production function given,
the marginal product of labour will be,
"\\frac{\\delta Q}{\\delta L}=0-1\\times{30}\\times{L^{1-1}}+0=-30"
and the marginal product of capital will be,
"\\frac{\\delta Q}{\\delta K}=2\\times{2\\times{K^{2-1}}}-0+0=4\\times{K}"
now, for finding the marginal rate for technical substitution(MRTS)
we use,
"Q=2K^2-30L+300"
or,
"K={(\\frac{Q+30L-300}{2})}^{1\/2}"
on differentiating with respect to L, we obtain
MRTS(K,L) ="\\frac{\\delta K}{\\delta L}=1\/2\\times15\\times{(\\frac{Q+30L-300}{2})}^{-1\/2}"
Comments
Leave a comment