Question #219724

If the inverse demand curve of profit maximizing monopolist is given as P =1200 − 2Q , and cost function as

C = Q3 − 61.25Q2+1528.5Q + 2000, find equilibrium output level, monopolist price, and profit.





1
Expert's answer
2021-07-26T01:28:05-0400

Meaning

p=1200Q2Q,p =1200Q − 2Q ,

c=Q361.25Q2+1528.5Q+2000c = Q^3 − 61.25Q^2+1528.5Q + 2000

Now the inverse demand function is one where price has to be expressed as a function of quantity q

Now, we know that total revenue equals price times quantity, so that


R(Q)=P(Q)×QR(Q)= P(Q)×Q

P(Q)×Q=1200Q2Q2P(Q)×Q=1200Q-2Q^2


Dividing through by Q We get


QQP[Q]=1200QQ2Q2Q,\frac{Q}{Q}P[Q]=\frac{1200Q}{Q}-\frac{2Q^2}{Q},


P[Q]=12002QP[Q]=1200-2Q


Which is the required inverse demand function



Let denote the profit function by. π(Q)π(Q)

Now,

π(Q)=R(Q)TC(Q)π(Q)=R(Q)-TC(Q)


π(Q)=(1200Q2Q2)(Q361.25Q2+1528.5Q+2000)π(Q)=(1200Q-2Q^2)-(Q^3 − 61.25Q^2+1528.5Q + 2000)


π(Q)=1200Q2Q2Q3+61.25Q21528.5Q2000π(Q)=1200Q-2Q^2-Q^3 + 61.25Q^2-1528.5Q - 2000


π(Q)=Q3+59.25Q2328.5Q+2000π(Q)=-Q^3 + 59.25Q^2-328.5Q + 2000

Which is the required profit function


Now finding profit maximizing output we need to find QQ^* such that

π(Q)=0....................(i)π(Q^*)=0....................(i)

π(Q)<0..................(ii)π(Q^*)<0................. .(ii)


Now

π(Q)=Q3+59.25Q2328.5Q+2000π(Q)=-Q^3 + 59.25Q^2-328.5Q + 2000

Differentiating both sides with respect to Q;

π(Q)=3Q2+118.5Q328.5π'(Q)=-3Q^2 + 118.5Q-328.5


Differentiating both sides again with respect to Q;

π(Q)=6Q+118.5π''(Q)=-6Q + 118.5

Now let the first satisfy condition (i)

π(Q)=0....................(i)π(Q^*)=0....................(i)

3(Q)2s+118.5Q328.5=0-3(Q^*)^2s + 118.5Q^*-328.5=0

(Q)2s39.5Q+109.5=0(Q^*)^2s - 39.5Q^*+109.5=0

2(Q)2s79Q+219=02(Q^*)^2s -79Q^*+219=0

2(Q)2s6Q73Q+219=02(Q^*)^2s -6Q^*- 73Q^*+219=0

2Q(Q3)73(Q3)=02Q^*(Q^*-3)-73(Q^*-3)=0

(2Q73)(Q3)=0(2Q^*-73)(Q^*-3)=0


Q= 3 or 36.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS