Meaning
p=1200Q−2Q,
c=Q3−61.25Q2+1528.5Q+2000
Now the inverse demand function is one where price P has to be expressed as a function of quantity q
Now, we know that total revenue equals price times quantity, so that
R(Q)=P(Q)×Q
P(Q)×Q=1200Q−2Q2
Dividing through by Q We get
QQP[Q]=Q1200Q−Q2Q2,
P[Q]=1200−2Q
Which is the required inverse demand function
Let denote the profit function by. π(Q)
Now,
π(Q)=R(Q)−TC(Q)
π(Q)=(1200Q−2Q2)−(Q3−61.25Q2+1528.5Q+2000)
π(Q)=1200Q−2Q2−Q3+61.25Q2−1528.5Q−2000
π(Q)=−Q3+59.25Q2−328.5Q+2000
Which is the required profit function
Now finding profit maximizing output we need to find Q∗ such that
π(Q∗)=0....................(i)
π(Q∗)<0..................(ii)
Now
π(Q)=−Q3+59.25Q2−328.5Q+2000
Differentiating both sides with respect to Q;
π′(Q)=−3Q2+118.5Q−328.5
Differentiating both sides again with respect to Q;
π′′(Q)=−6Q+118.5
Now let the first satisfy condition (i)
π(Q∗)=0....................(i)
−3(Q∗)2s+118.5Q∗−328.5=0
(Q∗)2s−39.5Q∗+109.5=0
2(Q∗)2s−79Q∗+219=0
2(Q∗)2s−6Q∗−73Q∗+219=0
2Q∗(Q∗−3)−73(Q∗−3)=0
(2Q∗−73)(Q∗−3)=0
Q= 3 or 36.5
Comments