a)
Milk demand is given as Q=100−3P1
Inverse function can be written as P=300−3Q
Q = output of farmer 1 (Q1) + output of farmer 2 (Q2)
Therefore P=300−3(Q1+Q2)
P=300−3Q1−3Q2
For farmer 1,
TR=P×Q gives
TR1=(300−3Q)1−3Q2)Q1TR1=300Q1−3Q12−3Q1Q2MR1=δQ1δTR1=300−6Q1−3Q2TC=150+2Q
MC=δQδTC=δQδ(150+2Q)=2
MC = 2 for both farmers because total cost is same for both.
Equating MR1=MC
300−6Q1−3Q2=26Q1=298−3Q2
Q1=49.67−21Q2 is farmer 1's reaction function.
For farmer 2,
TR2=(300−3Q1−3Q2)Q2TR∣2=300Q1−3Q1Q2−3Q22MR2=δQ2δTR2/=300−3Q1−6Q2MC=2
Equating
MR2=MC300−3Q1−6Q2=26Q2=298−3Q1Q2=49.67−21Q1 is farmer 2's reaction function.
Therefore,
Q1=49.67−21Q2 is Farmer 1's reaction function
Q2=49.67−21Q1 is Farmer 2's reaction function.
b)
To find the equilibrium let us substitute the reaction function of firm 1 in the reaction function of firm 2:
substitute equition 1 into equition 2
Q2=49.67−21(49.67−21)Q2=49.67−24.835+0.25Q2Q2−0.25Q2=24.835Q2=33.11
Q1=49.67−21(33.11)Q1=49.67−16.555Q1=33.11
The nash-equilibrium outputs are
Q1=33.11Q2=33.11
c)
profit=TR−TCFirst farmer=300Q1−3Q12−3Q1Q2−150−2Qsecond farmer=300Q1−3Q2Q2−3Q12−150−2Q
d)
Q=Q1+Q2MC=2P=300−3Q=300−3(50)=150
Profit=TR−TC=(150×50)−(150×300)=7050
profit per firm=7050÷2=3525
Comments