Question #214103

Two dairy farmers produce milk for a local town with local milk demand given by (P denotes price measured in Rands, Q denotes the quantity measured in liters). Both farmers have the same cost function given by (where denotes output). (a) Determine the reaction function of each farmer. [8] (b) Find the Cournot-Nash equilibrium. [2] (c) Calculate profits for each farmer [2] (d) Suppose that both farmers decide to form a cartel, determine profits for each farmer under the cartel 


1
Expert's answer
2021-07-06T18:22:20-0400

a)

Milk demand is given as Q=10013PQ = 100 - \frac{1}{3P}

Inverse function can be written as P=3003QP = 300 - 3Q

Q = output of farmer 1 (Q1) + output of farmer 2 (Q2

Therefore P=3003(Q1+Q2)P = 300 - 3(Q_1+ Q_2 )

P=3003Q13Q2P = 300 - 3Q_1 - 3Q_2

For farmer 1,

TR=P×QTR = P × Q gives

TR1=(3003Q)13Q2)Q1TR1=300Q13Q123Q1Q2MR1=δTR1δQ1=3006Q13Q2TC=150+2QTR _1 = (300 - 3Q_)1 - 3Q_2) Q_1\\ TR _1 = 300Q_1 - 3Q1^2 - 3Q_1Q_2\\ MR _1 =\frac {\delta TR _1} { \delta Q_1} = 300 - 6Q_1 - 3Q_2\\ TC = 150 + 2Q \\

MC=δTCδQ=δ(150+2Q)δQ=2MC =\frac {\delta TC} {\delta Q} = \frac {\delta (150+2Q)} {\delta Q}=2

MC = 2 for both farmers because total cost is same for both. 

Equating MR1=MCMR _1 = MC

3006Q13Q2=26Q1=2983Q2300 - 6Q_1 - 3Q_2 = 2\\ 6Q_1 = 298 - 3Q_2

Q1=49.6712Q2Q_1 = 49.67 - \frac{1}{2} Q_2 is farmer 1's reaction function. 

For farmer 2,

TR2=(3003Q13Q2)Q2TR2=300Q13Q1Q23Q22MR2=δTR2/δQ2=3003Q16Q2MC=2TR _2 = (300 - 3Q_1 - 3Q_2) Q_2\\ TR |_2 = 300Q_1 - 3Q_1Q_2 - 3Q_2^2\\ MR_ 2 = \frac{\delta TR_ 2 /}{\delta Q_2 }= 300 - 3Q_1 - 6Q_2\\ MC = 2

Equating

MR2=MC3003Q16Q2=26Q2=2983Q1Q2=49.6712Q1MR_ 2 = MC\\ 300 - 3Q_1 - 6Q_2 = 2\\ 6Q_2 = 298 - 3Q_1\\ Q_2 = 49.67 - \frac{1}{2} Q_1 is farmer 2's reaction function. 

Therefore,

Q1=49.6712Q2Q_1 = 49.67 - \frac{1}{2}Q_2 is Farmer 1's reaction function

Q2=49.6712Q1Q_2= 49.67 - \frac{1}{2}Q_1 is Farmer 2's reaction function. 


b)

To find the equilibrium let us substitute the reaction function of firm 1 in the reaction function of firm 2:

substitute equition 1 into equition 2

Q2=49.6712(49.6712)Q2=49.6724.835+0.25Q2Q20.25Q2=24.835Q2=33.11Q_2=49.67-\frac{1}{2}(49.67-\frac{1}{2})\\Q_2=49.67-24.835+0.25Q_2\\Q_2-0.25Q_2=24.835\\Q_2=33.11


Q1=49.6712(33.11)Q1=49.6716.555Q1=33.11Q_1=49.67-\frac{1}{2}(33.11)\\Q_1=49.67-16.555\\Q_1=33.11

The nash-equilibrium outputs are

Q1=33.11Q2=33.11Q_1=33.11\\Q_2=33.11


c)

profit=TRTCFirst farmer=300Q13Q123Q1Q21502Qsecond farmer=300Q13Q2Q23Q121502Qprofit=TR-TC\\ First \space farmer = 300Q_1 - 3Q1^2 - 3Q_1Q_2-150-2Q\\ second \space farmer\\= 300Q_1 - 3Q_2Q_2- 3Q1^2 -150-2Q

d)

Q=Q1+Q2MC=2P=3003Q=3003(50)=150Q=Q_1+Q_2\\MC=2\\P=300-3Q=300-3(50)=150


Profit=TRTC=(150×50)(150×300)=7050Profit=TR-TC\\=(150\times 50)-(150\times 300)=7050


profit per firm=7050÷2=3525=7050\div2=3525


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS