Question #212201

1.    Given the following production function Q = 20L2K and the unit prices of labor and capital to be Birr 48 and 12 respectively, then

a. What combination of labor and capital maximizes output with a cost of Birr 720?

b. What is the maximum output?

c. Show the output maximizing condition graphically.




1
Expert's answer
2021-07-01T13:18:50-0400

a.

For solving this question, we will use Lagrange method

Q=20L2KQ = 20L^2K

The equation for isocost line is 48L+12K=72048L + 12K = 720

So, using Lagrange method,

L=20L2Kλ(48L+12K720)L = 20L^2K - \lambda (48L + 12K - 720)

Differentiating w.r.t L and K 

20×2LKλ(48)=0.....................................(1)20\times2LK - \lambda(48) = 0 ..................................... (1)

20L2λ(12)=0.............................................(2)20L^2 - \lambda(12) = 0 ............................................. (2)

Dividing equation (1) by (2),

2KL=4812\frac{2K}{L }= \frac{48}{12}

K=2LK = 2L

Putting this value of K in isocost line

48L+12(2L)=72048L + 12(2L) = 720

72L=72072L = 720 L=10L = 10

andK=2×10=20K = 2\times 10 = 20

So, combination of labor that maximizes output is L = 10 and K = 20 units.


b.

Maximum output can be calculated by putting value of K and L in production function Q

So,

Q=20(10)2(20)=40000Q = 20(10)^2(20) = 40000

So, maximum output = 40000


c.

The graph below is showing the maximizing condition.




AB is the isocost line. Intercept on X axis is calculated by72048=15\frac{720}{48} = 15 and on Y axis 72012=60\frac{720}{12} = 60 .

Q is the production function curve.

Point E is showing the point where we will have maximum production of 40000, using L = 10 and K = 20 units. 

The maximizing condition is that the slope of isocost line and production curve should be equal.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS