C = Q3 − 61.25Q2+1528.5Q + 2000, find equilibrium output level, monopolist price, and profit.
Solution
Max profit "=R(Q)- C(Q)"
"R(Q) = 1200Q-2Q^2"
"1200Q-2Q^2-(Q^3-61.25Q^2" "+1528.5Q+2000" )
="- Q3+59.25Q2- 328.5Q-2000"
Max Profit ="- Q3+59.25Q2-328.5Q-2000"
Max Profit= π
"\u03c0'(Q)=-3Q2+118.5Q-328.5"
"\u03c0'(Q)=-6Q+118.5"
"\u03c0'(Q)=-3Q2+118.5Q-328.5=0"
Using the quadratic formula
Q=3
Q=6
"\u03c0"(3)=100.5> 0" is the relative minimum
"\u03c0"(36.5)=-100.5< 0" relative maximum
For maximum profits the firm should produce 36.5 units of output.
Q=36.5, π=16318.44
Comments
Leave a comment