Solution
Max profit =R(Q)−C(Q)
R(Q)=1200Q−2Q2
1200Q−2Q2−(Q3−61.25Q2 +1528.5Q+2000 )
=−Q3+59.25Q2−328.5Q−2000
Max Profit =−Q3+59.25Q2−328.5Q−2000
Max Profit= π
π′(Q)=−3Q2+118.5Q−328.5
π′(Q)=−6Q+118.5
π′(Q)=−3Q2+118.5Q−328.5=0
Using the quadratic formula
Q=3
Q=6
π"(3)=100.5>0 is the relative minimum
π"(36.5)=−100.5<0 relative maximum
For maximum profits the firm should produce 36.5 units of output.
Q=36.5, π=16318.44
Comments