Question #211619
  1. If the inverse demand curve of profit maximizing monopolist is given as P =1200 − 2Q , and cost function as

 C = Q3 − 61.25Q2+1528.5Q + 2000, find equilibrium output level, monopolist price, and profit.


1
Expert's answer
2021-06-30T10:13:03-0400

Solution


Max profit =R(Q)C(Q)=R(Q)- C(Q)

R(Q)=1200Q2Q2R(Q) = 1200Q-2Q^2

1200Q2Q2(Q361.25Q21200Q-2Q^2-(Q^3-61.25Q^2 +1528.5Q+2000+1528.5Q+2000 )

=Q3+59.25Q2328.5Q2000- Q3+59.25Q2- 328.5Q-2000

Max Profit =Q3+59.25Q2328.5Q2000- Q3+59.25Q2-328.5Q-2000

Max Profit= π

π(Q)=3Q2+118.5Q328.5π'(Q)=-3Q2+118.5Q-328.5

π(Q)=6Q+118.5π'(Q)=-6Q+118.5

π(Q)=3Q2+118.5Q328.5=0π'(Q)=-3Q2+118.5Q-328.5=0

Using the quadratic formula

Q=3

Q=6

π"(3)=100.5>0π"(3)=100.5> 0 is the relative minimum

π"(36.5)=100.5<0π"(36.5)=-100.5< 0 relative maximum


For maximum profits the firm should produce 36.5 units of output.


Q=36.5, π=16318.44


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS