Y= 4X1^1/2X2^1/2, factor prices are p1=1, p2=36 and the firm can hire as much of either factor it wants at these prices. The firm's marginal cost is
"Y= 4X_1^{\\frac{1}{2}}X_2^{\\frac{1}{2}}\\\\MRTS=\\frac{Mu_{x1}}{Mu_{x2}}=\\frac{\\frac{1}{2}(4x_1)^{\\frac{1}{2}}x_2^\\frac{1}{2}}{\\frac{1}{2}(4x_1)^{\\frac{1}{2}}x_2^\\frac{1}{2}}"
"MRTS=\\frac{x_2}{x_1}"
Approximately "\\frac{x_2}{x_1}=\\frac{p_1}{p_2}=\\frac{1}{36}"
"y=4(36x_2)^{\\frac{1}{2}}x_2^{\\frac{1}{2}}\\\\x_1=\\frac{36}{24}\\\\TC=p_1x_1+p_2x_2=\\frac{36}{24}y+\\frac{36}{24}y\\\\TC=\\frac{72}{24}y=3y\\\\MC=\\frac{\u2206TC}{\u2206y}=3"
Balance of constant returns to scale,MC is constant.
Comments
Leave a comment