4. If an individual’s preferences are described by the utility function U(X1 , X2 ) = X12 + X22,
a) graph the indifference curve for U = 20 and U= 40.
b) Find the optimal consumption quantities if P1 = US$2.50 ; P2 = US$ 7.50; and M = US$ 60.
a)
"U(X_1," "X_2)\\ =\\ X_1^2+X_2^2"
"U=20"
"20=X_1^2+X_2^2"
"X_1^2=20-X_2^2"
For U=40
"40=X_1^2+X_2^2"
"X_1^2=40-X_2^2"
b)
Budget line equation= "P_1X_1\\ +P_2X_2=M" .................Equation 1
Substituting the values given to Equation 1 above. We get,
"2.50X_1+7.50X_2=60..........................2"
"U(X_1,X_2)=X_1^2+X_2^2"
"MRS(X_1,X_2)=\\frac{MUx_!}{MUx_2}"
"MUX_1=X_1,MUX_2" "=2X_2"
"MRS=X_1,X_2=\\frac{X_1}{X_2}"
Optimal Bundle=
"\\frac{P_1}{P_2}=MRS""(X_1,X_2)"
"\\frac{2.5}{7.5}=\\frac{X_1}{X_2}"
"2.5X_2=7.5X_1"
"X_2=3X_1.......................................3"
Substituting "X_2" in equation 2
We get,
"X_1=\\frac{60}{25}"
"=2.4"
Substituting "X_1" in equation 3
We get,
"X_2=3X_1"
"=3\\times2.4=7.2"
"X_1=2.4,\\ X_2=7.2"
Comments
Leave a comment