Question #208136

4. If an individual’s preferences are described by the utility function U(X1 , X2 ) = X12 + X22,

a) graph the indifference curve for U = 20 and U= 40.

b) Find the optimal consumption quantities if P1 = US$2.50 ; P2 = US$ 7.50; and M = US$ 60.



1
Expert's answer
2021-06-21T11:58:47-0400

a)

U(X1,U(X_1, X2) = X12+X22X_2)\ =\ X_1^2+X_2^2


U=20U=20


20=X12+X2220=X_1^2+X_2^2


X12=20X22X_1^2=20-X_2^2


For U=40


40=X12+X2240=X_1^2+X_2^2


X12=40X22X_1^2=40-X_2^2




b)

Budget line equation= P1X1 +P2X2=MP_1X_1\ +P_2X_2=M .................Equation 1


Substituting the values given to Equation 1 above. We get,


2.50X1+7.50X2=60..........................22.50X_1+7.50X_2=60..........................2

U(X1,X2)=X12+X22U(X_1,X_2)=X_1^2+X_2^2



MRS(X1,X2)=MUx!MUx2MRS(X_1,X_2)=\frac{MUx_!}{MUx_2}


MUX1=X1,MUX2MUX_1=X_1,MUX_2 =2X2=2X_2


MRS=X1,X2=X1X2MRS=X_1,X_2=\frac{X_1}{X_2}


Optimal Bundle=


P1P2=MRS\frac{P_1}{P_2}=MRS(X1,X2)(X_1,X_2)


2.57.5=X1X2\frac{2.5}{7.5}=\frac{X_1}{X_2}


2.5X2=7.5X12.5X_2=7.5X_1


X2=3X1.......................................3X_2=3X_1.......................................3


Substituting X2X_2 in equation 2


We get,


X1=6025X_1=\frac{60}{25}


=2.4=2.4

Substituting X1X_1 in equation 3


We get,


X2=3X1X_2=3X_1


=3×2.4=7.2=3\times2.4=7.2


X1=2.4, X2=7.2X_1=2.4,\ X_2=7.2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS