Question #207512

If an individual’s preferences are described by the utility function U(X1 , X2 ) = X12 + X22, graph the indifference curve for U = 20 and U= 40.Find the optimal consumption quantities if P1 = US$2.50 ;         P2 = US$ 7.50; and M = US$ 60.


1
Expert's answer
2021-06-17T10:18:34-0400

Utility function

U(x1,x2)=x12+x22U(x_1,x_2)=x_1^2+x_2^2

so,


The indifference curve

U=20V=40U=20\\V=40






Given information

p1=US$2.50p2=US$7.50p_1=US\$2.50\\p_2=US\$7.50


M=US$60M=US\$60


Budget line equation

p1x1+p2x2=M..............................................(1)p_1x_1+p_2x_2=M..............................................(1)


substitute these values in the above equation 1

$2.50x1+$7.50x2=60....................................(2)From U(x1,x2)=x12+x22MRS(x1,x2)=MUx1MUx2MUx1=2x1,MUx2=2x2MRS(x1,x2)=2x12x2=x1x2\$2.50x_1+\$7.50x_2=60....................................(2)\\From\space U(x_1,x_2)=x_1^2+x_2^2\\MRS(x_1,x_2)=\frac{MUx_1}{MUx_2}\\MUx_1=2x_1,MUx_2=2x_2\\MRS(x_1,x_2)=\frac{2x_1}{2x_2}\\=\frac{x_1}{x_2}


For optimal bundle

equation slope of budget line and MRS

p1p2=MRS(x1,x2)\frac{p_1}{p_2}=MRS_{(x_1,x_2)}\\

2.57.5=x1x2\frac{2.5}{7.5}=\frac{x_1}{x_2}

x2(2.5)=(7.5)x1x2=3x1....................................................(3)x_2(2.5)=(7.5)x_1\\x_2=3x_1....................................................(3)

putting x2 value in eq 2

we get

$2.50x1+$7.50x2=60$2.50x1+$7.50×3x1=60$2.50x1+$22.5x1=6025x1=60x1=6025x1=2.4\$2.50x_1+\$7.50x_2=60\\\$2.50x_1+\$7.50\times3x_1=60\\\$2.50x_1+\$22.5x_1=60\\25x_1=60\\x_1=\frac{60}{25}\\x_1=2.4


putting x1 value in eqn 3

x2=3x1=3×2.4x2=7.2x_2=3x_1\\=3\times2.4\\x_2=7.2


x1=2,4

x2=7.2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS