Assume the quantity demanded for a particular commodity is given by the formula (Q)= 8000P^(-1.5). Compute the elasticity of demand
Solution:
Elasticity of demand (Ed) ="\\frac{\\%\\triangle Q}{\\%\\triangle P} = \\frac{\\triangle Q}{\\triangle P}\\times \\frac{ P}{Q}"
This is a constant elasticity of demand:
Ed = "\\frac{\\triangle Q}{\\triangle P}\\times \\frac{ P}{Q}"
"\\frac{\\triangle Q}{\\triangle P} = -12,000P^{-2.5}"
"\\frac{ P}{Q} = \\frac{ P}{8,000P^{-1.5} }"
Ed = "-12,000P^{-2.5} \\times \\frac{ P}{8,000P^{-1.5} } = -1.5P^{-2.5} \\times \\frac{ P}{P^{-1.5} }"
= "= -1.5P^{-2.5} P P^{1.5} = -1.5P^{-2.5} P^{2.5} = -1.5"
Elasticity of demand (Ed) = -1.5
Comments
Leave a comment