Question #204929

Assume the quantity demanded for a particular commodity is given by the formula (Q)= 8000P^(-1.5). Compute the elasticity of demand

1
Expert's answer
2021-06-14T13:17:30-0400

Solution:

Elasticity of demand (Ed) =%Q%P=QP×PQ\frac{\%\triangle Q}{\%\triangle P} = \frac{\triangle Q}{\triangle P}\times \frac{ P}{Q}


This is a constant elasticity of demand:

Ed = QP×PQ\frac{\triangle Q}{\triangle P}\times \frac{ P}{Q}


QP=12,000P2.5\frac{\triangle Q}{\triangle P} = -12,000P^{-2.5}


PQ=P8,000P1.5\frac{ P}{Q} = \frac{ P}{8,000P^{-1.5} }


Ed = 12,000P2.5×P8,000P1.5=1.5P2.5×PP1.5-12,000P^{-2.5} \times \frac{ P}{8,000P^{-1.5} } = -1.5P^{-2.5} \times \frac{ P}{P^{-1.5} }


= =1.5P2.5PP1.5=1.5P2.5P2.5=1.5= -1.5P^{-2.5} P P^{1.5} = -1.5P^{-2.5} P^{2.5} = -1.5


Elasticity of demand (Ed) = -1.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS