Question #202501

A monopoly firm is faced with the following demand function

P = 26 – 0.5Q. The Marginal Cost function for the firm is given

by 6 + 6Q and the total fixed cost is 4.

Determine;

a) The profit maximizing output.

b) The level of supernormal profit if any.

c) The output level at the break-even point


1
Expert's answer
2021-06-03T13:45:10-0400

Soln,Soln,

p=260.5Qp=26-0.5Q

MC=6+6QMC=6+6Q

TFC=4TFC=4

a. MC=MRMC=MR

P=AR

P=260.5QP=26-0.5Q

TR=P.Q(260.5Q)QTR=P.Q(26-0.5Q)Q

TR=26Q0.5Q2TR=26Q-0.5Q^2

MR=δTRδQ=26QMR=\frac {\delta TR}{\delta Q}=26-Q

MR=26QMR=26-Q

Max at MC=MR

=6+6Q=26Q=7Q7=207=6+6Q=26-Q= \frac{ 7Q}{7}=\frac {20}{7}

Q=2.86units.Q=2.86 units.


b.TRTR greater than TC

TR=260.5Q2TR=26-0.5Q^2 BUT Q=2.86Q=2.86

26(2.86)0.5(2.86)226(2.86)-0.5(2.86)^2

74.36−4.0898=78.4498


TR=78.4498TR=78.4498

TC=(MC)dQTC=\int(MC) dQ BUT MC=6+6QMC=6+6Q

TC=4+6Q+6Q2=4+17.16+49.07=70.23TC=4+6Q+6Q^2=4+17.16+49.07=70.23

TC=70.23TC=70.23


TRTCTR-TC

=78.449870.23=8.2122=78.4498-70.23 =8.2122


c. At break even point TC=TR

TC=4+6Q+6Q2TC=4+6Q+6Q^2

TR=26Q0.5Q2TR=26Q-0.5Q^2

THUS, 26Q0.5Q2=4+6Q+6Q226Q-0.5Q^2=4+6Q+6Q^2

=6.5Q220Q+4=0=6.5Q^2-20Q+4=0

=42.25-40Q+8=0

40Q=50.2540Q=50.25

=1.26=1.26



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS