Question #202500

Assume that the marginal cost of a competitive firm is given by;

MC = 6Q2 – 4Q – 12 and the marginal Revenue of the firm is given by,

MR = – 2Q. Then find,

A) Functions of TVC, AVC, AC and AR

B) The firms profit maximization level of output.

C) How much profit firm can generate?

D) Does the firm generate profit or incur loss at 5 units of output?


1
Expert's answer
2021-06-06T19:57:02-0400

(a)

MC=6Q24Q12MR=2QTC=6Q24Q12  dq=6Q334Q2212QMC=6Q^{2}4Q-12\\MR=-2Q\\TC=\smallint 6Q^{2}-4Q-12\space \space dq\\=\frac{6Q^{3}}{3}-\frac{4Q^{2}}{2}12Q


TC=2Q32Q212Q+CTVC=2Q32Q212QTC=2Q^{3}-2Q^{2}-12Q+C\\TVC=2Q^{3}-2Q^{2}-12Q


AVC=TVCQ=2Q32Q212QQ=2Q22Q12AVC=\frac{TVC}{Q}=\frac{2Q^{3}-2Q^{2}-12Q}{Q}\\=2Q^{2}-2Q-12


AC=TCQ=2Q22Q12+CQAC=\frac{TC}{Q}\\=2Q^{2}-2Q-12+\frac{C}{Q}


TR=2Q  dq=2Q22=Q2+CTR=\smallint -2Q\space \space dq\\=\frac{-2Q^{2}}{2}=-Q^{2}+C

AR=TRQ=Q2+CQ=Q+CQAR=\frac{TR}{Q}=\frac{Q^{2}+C}{Q}=-Q+\frac{C}{Q}


(b)

MR=MC6Q24Q12=2Q6Q24Q+2Q=126Q2+2Q=126Q2+2Q12=0MR=MC\\6Q^{2}-4Q-12=-2Q\\6Q^{2}-4Q+2Q=12\\6Q^{2}+2Q=12\\6Q^{2}+2Q-12=0


Q=1.25733Q1Q=1.25733\\Q\approx1


(c)

profit=TRTC=[Q2][2Q32Q212Q]=[1][2212]=[1][12]=1+12=11profit=TR-TC\\=[-Q^{2}]-[2Q^3-2Q^2-12Q]\\=[-1]-[2-2-12]\\=[-1]-[-12]\\=-1+12\\=11


(d)

at Q=5

profit=TRTC=[Q2][2Q32Q212Q]=[1][2212]=[1][12]=1+12=11profit=TR-TC\\=[-Q^{2}]-[2Q^3-2Q^2-12Q]\\=[-1]-[2-2-12]\\=[-1]-[-12]\\=-1+12\\=11

[25][2505060]=[25][140]=165LOSS[-25]-[250-50-60]\\=[-25]-[140]\\=-165\\LOSS

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS