If a consumers objective function is given by U=X1aX2b subject to P1X1 + P2X2 = m. Establish the levelsbof X1 and X2 that maximizes the consumers satisfaction.
Solution
U=X1aX2b
M=P1X1+P2X2
MUx1="\\frac{DU}{DX1}=aX"1a-1X2b-1
maximizing utility
"\\frac{MU x1}{MU x2\ufeff}" ="\\frac{P 1}{P2}"
solve for X2
"\\frac{aX_2^bX_2^{-b+1}}{ bX_1^aX_1^{-a+1}}" ="\\frac{P_1}{P_2}"
"\\frac{aX_2}{bX_1}" ="\\frac{P_1}{P_2}" X2= "\\frac{bP_1}{aP_2}"
M=P1X1+P2X2
substituting X2
M= P1X1+P2 "\\frac{bP_1}{aP_2}" X1
M="\\frac{aP_1X_1}{a}" +"\\frac{bP_1X_1}{a}"
M="\\frac{(a+b)P_1}{a}" X1
X1= "\\frac{aM}{(a+b)P_1}"
X2= "\\frac{bP_1}{aP2}" x "\\frac{aM}{(a+b)P_1}"
X2="\\frac{bM}{(a+b)P_2}"
Comments
Leave a comment