Given,
Production function:
Q=KLβ0.8K2β0.2L2 
(A).
Q=10Lβ0.8(10)2β0.2L2 
Q=10Lβ0.8Γ100β0.2L2 
Q=10Lβ80β0.2L2 
AP=LQβ 
AP=L10Lβ80β0.2L2β 
AP=10βL80ββ0.2L 
AP will be maximum if the first order derivative is zero
dLdAPβ=β(L2β80β)β0.2 
dLdAPβ=L280ββ0.2 
dLdAPβ=0 
L280ββ0.2=0 
L280β=0.2 
L2=0.280β 
L2=400 
L=20 
L=20 will give maximum AP.
Substitute K=10 in the production function.
The quantity of wheat at L=20 is given below:
Q=10Γ20β80β0.2Γ(20)2 
Q=200β80β80 
Q=40 
40 units of wheat will be produced.
(B).
 To find maximum output we will find the first-order derivative (slope) of the production function and set that equal to zero.
dLdQβ=dLd(10Lβ80β0.2L2)β 
dLdQβ=10β0.2Γ2L 
dLdQβ=10β0.4L 
dLdQβ=0 
10β0.4L=0 
10=0.4L 
L=0.410β 
L=25 
At L=25 the output will be maximum.
(c). 
Since L=25 gives the maximum output the firm will hire 25 units of labor to be efficient. After L=25 the total production will decrease and it will be inefficient for the firm to produce above L=25.
                             
Comments