Given,
Production function:
Q=KLβ0.8K2β0.2L2
(A).
Q=10Lβ0.8(10)2β0.2L2
Q=10Lβ0.8Γ100β0.2L2
Q=10Lβ80β0.2L2
AP=LQβ
AP=L10Lβ80β0.2L2β
AP=10βL80ββ0.2L
AP will be maximum if the first order derivative is zero
dLdAPβ=β(L2β80β)β0.2
dLdAPβ=L280ββ0.2
dLdAPβ=0
L280ββ0.2=0
L280β=0.2
L2=0.280β
L2=400
L=20
L=20 will give maximum AP.
Substitute K=10 in the production function.
The quantity of wheat at L=20 is given below:
Q=10Γ20β80β0.2Γ(20)2
Q=200β80β80
Q=40
40 units of wheat will be produced.
(B).
To find maximum output we will find the first-order derivative (slope) of the production function and set that equal to zero.
dLdQβ=dLd(10Lβ80β0.2L2)β
dLdQβ=10β0.2Γ2L
dLdQβ=10β0.4L
dLdQβ=0
10β0.4L=0
10=0.4L
L=0.410β
L=25
At L=25 the output will be maximum.
(c).
Since L=25 gives the maximum output the firm will hire 25 units of labor to be efficient. After L=25 the total production will decrease and it will be inefficient for the firm to produce above L=25.
Comments