Question #192408

Consider the production function Q = 2(KL)0.5

a)     What is the marginal product of labour and capital

b)     What is the marginal rate of technical substitution of labor for capital

 c)     What is the elasticity of substitution at a point K = 1, L = 1 if we increase K by one unit?


 

1
Expert's answer
2021-05-16T17:50:04-0400

(a) Q=2(KL)0.5Q = 2(KL)^{0.5}

Q=2K0.5L0.5Q = 2 K^{0.5} L^{0.5}

Marginal product of labor = Differentiate the above production function with respect to L

dQdL=0.5×2K0.5L0.51\frac{dQ}{dL}= 0.5 × 2 K^{0.5 }L^{0.5-1}

 dQdL=0.5×2K0.5L0.5\frac{dQ}{dL}= 0.5 × 2 K^{0.5 }L^{-0.5}

dQdL=K0.5L0.5\frac{dQ}{dL}=\frac {K^{0.5 }}{L^{0.5}}

Marginal product of labor = K0.5 / L0.5


Q=2K0.5L0.5Q = 2 K^{0.5 }L^{0.5}

Marginal product of capital = Differentiate the above production function with respect to K

dQdK=0.5×2×K0.51L0.5\frac{dQ}{dK} = 0.5 × 2 × K^{0.5-1} L^{0.5}

dQdK=0.5×2×K0.5L0.5\frac{dQ}{dK }= 0.5 ×2 × K^{-0.5 }L^{0.5}

dQ/dK=L0.5K0.5dQ/dK =\frac{ L^{0.5}} { K^{0.5}}

Marginal product of capital = L0.5 / K0.5

 

(b)marginal rate of technical substitution of labor for capital =change in capital/chang in labor

=KL\frac{∆K}{∆L}

L0.5K0.5K0.5L0.5\frac{L^{0.5} K^{0.5}}{K^{0.5} L^{0.5}}

=KL=\frac{K}{L}

(c) Elasticity of substitution σ is given by

σ=dln(k/l)dln(MRTS)σ=\frac{d ln(k/l)}{d ln(|MRTS|)}


=dln(k/l)dln(MRTS)=1=\frac{d ln(k/l)}{d ln(|MRTS|)}=1

MRTS=klMRTS=\frac{k}{l}

Taking log on both sides

lnkl=ln(MRTS)ln\frac{k}{l}=ln({|MRTS|})

Taking derivative both sides we get

dlnkl=dln(MRTS)d ln\frac{k}{l}=d ln(|MRTS|)

σ=dln(kl)dln(MRTS)=1σ=\frac{d ln(\frac{k}{l})}{d ln(|MRTS|)}=1





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS