Answer to Question #187418 in Microeconomics for que

Question #187418

A competitive firm’s cost function is given as C = 100q − 4q 2 + 0.2q 3 + 450. When the market price is 75, what will the firm do in the short run? Draw a diagram that includes MC, AC, and AVC curves, and indicate the area for the profit in case the firm decides to produce.



1
Expert's answer
2021-05-04T07:28:21-0400

The cost function will be C=100q4q2+0.2q3+450C=100q-4q^2+0.2q^3+450

MC=dcdq=1008q+0.6q2MC=\frac{dc}{dq}=100-8q+0.6q^2

Price(P)=75Price(P)=75


Price maximization condition will be calculated as P=MCP=MC

1008q+0.6q2=75100-8q+0.6q^2=75

0.6q28q+25=00.6q^2-8q+25=0

Solving this equation we will get that q=8.33 or 5


Profit function will therefore be; π=pqc\pi=pq-c


π=75q100q+4q20.2q3450\pi=75q-100q+4q^2-0.2q^3-450


dπdq=8q0.6q225=0\frac{d\pi}{dq}=8q-0.6q^2-25=0


q=8.33 or 5.


d2πdπ=8(0.6×2)q\frac{d^2\pi}{d\pi}=8-(0.6\times2)q


=81.2q=8-1.2q

At q=8.33, d2πdq=8(1.2×8.33)q=8.33,\ \frac{d^2\pi}{dq}=8-(1.2\times8.33)


=1.996=-1.996


At q=5, d2π2q2=8(1.2×5)\ q=5,\ \frac{d^2\pi}{2q^2}=8-(1.2\times5)


=2>0=2>0


Therefore,


d2πdq2<0\frac{d^2\pi}{dq^2}<0 for q =8.33for \ q\ =8.33


hence profit maximization satisfied will produce 8.33 units.


Profits= π=4q20.2q345025q\pi=4q^2-0.2q^3-450-25q


=4(8.33)20.2(0.33)3450(25×8.33)=4(8.33)^2-0.2(0.33)^3-450-(25\times8.33)


=496.3=-496.3


AC=cq=1004q+0.2q2+450qAC=\frac{c}{q}=100-4q+0.2q^2+\frac{450}{q}


At q=8.33, AC=100(4×8.33)+0.2(8.33)2+4508.33q=8.33, \ AC=100-(4\times8.33)+0.2(8.33)^2+\frac{450}{8.33}


=134.579=134.579


VC=100q4q2+0.2q3VC=100q-4q^2+0.2q^3


AVC=VCq=1004q+0.2q3AVC=\frac{VC}{q}=100-4q+0.2q^3


At q=8.33, AVC=100(4×8.33)+0.2(8.33)2q=8.33,\ AVC=100-(4\times8.33)+0.2(8.33)^2


=80.56=80.56

The diagram below shows the profit area in case the firms decide to produce.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment