The cost function will be C=100q−4q2+0.2q3+450
MC=dqdc=100−8q+0.6q2
Price(P)=75
Price maximization condition will be calculated as P=MC
100−8q+0.6q2=75
0.6q2−8q+25=0
Solving this equation we will get that q=8.33 or 5
Profit function will therefore be; π=pq−c
π=75q−100q+4q2−0.2q3−450
dqdπ=8q−0.6q2−25=0
q=8.33 or 5.
dπd2π=8−(0.6×2)q
=8−1.2q
At q=8.33, dqd2π=8−(1.2×8.33)
=−1.996
At q=5, 2q2d2π=8−(1.2×5)
=2>0
Therefore,
dq2d2π<0 for q =8.33
hence profit maximization satisfied will produce 8.33 units.
Profits= π=4q2−0.2q3−450−25q
=4(8.33)2−0.2(0.33)3−450−(25×8.33)
=−496.3
AC=qc=100−4q+0.2q2+q450
At q=8.33, AC=100−(4×8.33)+0.2(8.33)2+8.33450
=134.579
VC=100q−4q2+0.2q3
AVC=qVC=100−4q+0.2q3
At q=8.33, AVC=100−(4×8.33)+0.2(8.33)2
=80.56
The diagram below shows the profit area in case the firms decide to produce.
Comments
Leave a comment