Question #186106

I'm given a utility function U=xy and MUx=y while MUy=x. Price of x is $2 and the income is $40. To maximize utility subject to the budget constraint, 5 units of y is purchased.

QUESTION: What must be the price of y and the amount of x consumed?


Thank you :)


1
Expert's answer
2021-05-05T07:28:22-0400

U=xyU=xy , MUx=yMUx=y ,MUy=xMUy=x  I=40I=40


At utility maximisation: MUxMUy=PxPy\frac{MUx}{MUy}=\frac{Px}{Py}

yx=2Py\frac{y}{x}=\frac{2}{Py}

2x=Py×y2x=Py\times y

x=Py×y2x=\frac {Py\times y}{2}


Budget constraint: Px×x+Py×y=IPx\times x+Py\times y=I

2x+Py×y=402x+Py\times y=40 and y=5y=5

2(5×Py)2+Py×5=40\frac{2(5\times Py)}{2}+Py\times 5=40


10Py=$4010Py=\$40


Py=$4Py=\$4


Calculating for the amount of x consumed:

x=$4×5$2x=\frac{\$4\times 5}{\$2}


x=10unitsx=10 units

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS