Given utility maximization problem U= Q1Q2 subject to 10Q1 +2Q2=240
a. Derive the Lagrange function
b. Derive the first order conditions
c. Use Cramer’s rule to find the critical values of Q1, Q2 and �
Expert's answer
a) Lagrange function:
b) first-order conditions:
"ZQ1 = Q2\u2212 \u03bb10 = 0\\\\\n\n\n ZQ2 = Q1\u2212 \u03bb 2 = 0 \\\\\n\n\nZ\u03bb = 240 \u2212 10Q1 \u22122 Q2 =0."
"Z\\lambda=240-10Q1-2Q2=0"
"ZQ1=Q2- \\lambda10=0"
"ZQ2=Q1-\\lambda2=0"
c) "\\begin{bmatrix}\n 0 & -10 & -2 \\\\\n -10 & 0 &1 \\\\\n-2 & 1 & 0\n\\end{bmatrix}" "\\begin{bmatrix}\n \\lambda \\\\\n Q1 \\\\ Q2\n\\end{bmatrix}" = "\\begin{bmatrix}\n -240 \\\\\n 0 \\\\ 0\n\\end{bmatrix}"
Q1M"=\\frac{240}{2[-10]}= -12"
Q2M"=\\frac{240}{2[-2]}=-60"
"\\lambda=\\frac{240}{2[-10.-2]}=6"
Comments
Leave a comment