Answer to Question #179276 in Microeconomics for isaac mensah

Question #179276
Given utility maximization problem U= Q1Q2 subject to 10Q1 +2Q2=240
a. Derive the Lagrange function
b. Derive the first order conditions
c. Use Cramer’s rule to find the critical values of Q1, Q2 and �
1
Expert's answer
2021-04-12T07:06:36-0400


a) Lagrange function:

"Z = Q1Q2+ \u03bb(240-10Q1-2Q2)"

b) first-order conditions:

"ZQ1 = Q2\u2212 \u03bb10 = 0\\\\\n\n\n ZQ2 = Q1\u2212 \u03bb 2 = 0 \\\\\n\n\nZ\u03bb = 240 \u2212 10Q1 \u22122 Q2 =0."


"Z\\lambda=240-10Q1-2Q2=0"

"ZQ1=Q2- \\lambda10=0"

"ZQ2=Q1-\\lambda2=0"


c) "\\begin{bmatrix}\n 0 & -10 & -2 \\\\\n -10 & 0 &1 \\\\\n-2 & 1 & 0\n\\end{bmatrix}" "\\begin{bmatrix}\n \\lambda \\\\\n Q1 \\\\ Q2\n\\end{bmatrix}" = "\\begin{bmatrix}\n -240 \\\\\n 0 \\\\ 0\n\\end{bmatrix}"


Q1M"=\\frac{240}{2[-10]}= -12"


Q2M"=\\frac{240}{2[-2]}=-60"


"\\lambda=\\frac{240}{2[-10.-2]}=6"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS