Question #178171

1.      Assume that consumer A consumes two products Q1 and Q2  when the first product price increases, the consumer decided to decrease for the second product? Explain

2.      Given that the profit function for a firm p = 150x + 4x2 – xy – 9y2 + 100y + 2x + y = 50 with a constraint of 2x + y = 50. Determine the amount of x and y which maximizes profit. A. Using the substitution method  B. Using the language method


1
Expert's answer
2021-04-07T10:23:37-0400

1.

the two products are complements. When the price of Q1 increased, the consumer was forced to decrease the consumption of product Q2


2.

A. Substitution method

y=502xy=50-2x

substituting into the profit function we get

150x+4x250x2x222500+1800=36x2+5000200x+2x+502x=50150x+4x^2-50x-2x^2 -22500+1800=36x^2+5000-200x+2x+50-2x=50

38x2100x15700=038x^2-100x-15700=0

x=21.68461851x=21.68461851

y=6.63076298y=6.63076298


B. Lagrange method

δfδx=δgδxλ,δfδy=δgδyλ\frac{\delta f}{\delta x} =\frac{\delta g}{\delta x} \lambda , \frac {\delta f}{\delta y} =\frac {\delta g}{\delta y}\lambda


δgδx=2λ,δgδy=λ\frac{\delta g}{\delta x}=2\lambda, \frac{\delta g}{\delta y} =\lambda


g(x,y)=2x+y=50g(x,y) =2x+y=50

2(2y)+y=502(2y)+y=50

4y+y=504y+y=50

5y=505y=50

5y5=505\frac{5y}{5}=\frac{50}{5}

y=10y=10


2xy=502x-y=50

since y=10 we substitute with 10

2x+10=502x+10=50

2x=50102x=50-10

2x=402x=40

2x2=402\frac{2x}{2}=\frac{40}{2}

x=20x=20

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS