Question #178017

Let Z = f(x,y) = 3x3-5y2-225x + 70y + 23.

(i)

Find the stationary points of z.

(ii)

Determine if at these points the function is at a relative maximum, relative 

minimum, infixion point, or saddle point.


1
Expert's answer
2021-04-14T11:19:38-0400

ANSWER:

Let Z=f(x,y)=3x2-5y2-225x+70y+23

 f(x,y) x=9x2225=0\tfrac{\partial~f(x,y)}{\partial~x} =9x^{2} -225 =0

xo =2259\sqrt{\dfrac{225}{9}} =5

 f(x,y) y=10y+70=0\tfrac{\partial~f(x,y)}{\partial~y} =-10 y +70 =0

y=-7

D=2 f(xo,yo) x22 f(xo,yo) y x2 f(xo,yo) x  y2 f(xo,yo) y2\begin{vmatrix} \tfrac{\partial{^2}~f(x_o,y_o)}{\partial~x^{2}} & \tfrac{\partial{^2}~f(x_o,y_o)}{\partial~y{\partial~x}} \\ \tfrac{\partial{^2}~f(x_o,y_o)}{\partial~x~\partial~y} & \tfrac{\partial{^2}~f(x_o,y_o)}{\partial~y^{2}} \end{vmatrix}

D=900010\begin{vmatrix} 90 & 0 \\ 0 & -10 \end{vmatrix}

D=90*-10=-900


(i). Find the stationary points of z.

Point D is less than zero, therefore it is a stationary point.


(ii)Determine if at these points the function is at a relative maximum, relative 

minimum, infixion point, or saddle point.

(x0,y0) =(5,-7) is a saddle point.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS