Let Z = f(x,y) = 3x3-5y2-225x + 70y + 23.
(i)
Find the stationary points of z.
(ii)
Determine if at these points the function is at a relative maximum, relative
minimum, infixion point, or saddle point.
ANSWER:
Let Z=f(x,y)=3x2-5y2-225x+70y+23
"\\tfrac{\\partial~f(x,y)}{\\partial~x} =9x^{2} -225 =0"
xo ="\\sqrt{\\dfrac{225}{9}}" =5
"\\tfrac{\\partial~f(x,y)}{\\partial~y} =-10 y +70 =0"
y=-7
D="\\begin{vmatrix}\n \\tfrac{\\partial{^2}~f(x_o,y_o)}{\\partial~x^{2}} & \\tfrac{\\partial{^2}~f(x_o,y_o)}{\\partial~y{\\partial~x}} \\\\\n \\tfrac{\\partial{^2}~f(x_o,y_o)}{\\partial~x~\\partial~y} & \\tfrac{\\partial{^2}~f(x_o,y_o)}{\\partial~y^{2}}\n\\end{vmatrix}"
D="\\begin{vmatrix}\n 90 & 0 \\\\\n 0 & -10\n\\end{vmatrix}"
D=90*-10=-900
(i). Find the stationary points of z.
Point D is less than zero, therefore it is a stationary point.
(ii)Determine if at these points the function is at a relative maximum, relative
minimum, infixion point, or saddle point.
(x0,y0) =(5,-7) is a saddle point.
Comments
Leave a comment