Let's first find the fixed cost (FC):
"AFC_1=\\dfrac{FC}{Q_1},""FC=AFC_1Q_1=\\$40\\cdot1=\\$40."Then, we can find "AFC" for the output from "Q=2" to "Q=5":
"AFC_2=\\dfrac{FC}{Q_2}=\\dfrac{\\$40}{2}=\\$20,""AFC_3=\\dfrac{FC}{Q_3}=\\dfrac{\\$40}{3}=\\$13.33,""AFC_4=\\dfrac{FC}{Q_4}=\\dfrac{\\$40}{4}=\\$10,""AFC_5=\\dfrac{FC}{Q_5}=\\dfrac{\\$40}{5}=\\$8."Since, "AC=AFC+AVC", we can find "AVC" for each number of output:
"AVC_1=AC_1-AFC_1=\\$100-\\$40=\\$60,""AVC_2=AC_2-AFC_2=\\$36-\\$20=\\$16,""AVC_3=AC_3-AFC_3=\\$36-\\$13.33=\\$22.67,""AVC_4=AC_4-AFC_4=\\$36-\\$10=\\$26,""AVC_5=AC_5-AFC_5=\\$12-\\$8=\\$4."Let's find the TC. By the definition,
"AC=\\dfrac{TC}{Q},""TC_1=AC_1\\cdot Q_1=\\$100\\cdot1=\\$100,""TC_2=AC_2\\cdot Q_2=\\$36\\cdot2=\\$72,""TC_3=AC_3\\cdot Q_3=\\$36\\cdot3=\\$108,""TC_4=AC_4\\cdot Q_4=\\$36\\cdot4=\\$144,""TC_5=AC_5\\cdot Q_5=\\$12\\cdot5=\\$60."By the definition of MC we have:
"MC_1=\\dfrac{TC_2-TC_1}{Q_2-Q_1}=\\dfrac{\\$72-\\$100}{2-1}=-\\$28,""MC_2=\\dfrac{TC_3-TC_2}{Q_3-Q_2}=\\dfrac{\\$108-\\$72}{3-2}=\\$36,""MC_3=\\dfrac{TC_4-TC_3}{Q_4-Q_3}=\\dfrac{\\$144-\\$108}{4-3}=\\$36,""MC_4=\\dfrac{TC_5-TC_4}{Q_5-Q_4}=\\dfrac{\\$60-\\$144}{5-4}=-\\$84."Finally, we get the following table:
Comments
Leave a comment