Question #167421

A consumer’s utility function is given by 𝑈(𝑥1

,𝑥2

) = 2𝑥1𝑥2 + 3𝑥1

. Where 𝑥1

and 𝑥2

denote the number of items of two goods 𝐺1

and 𝐺2

that are bought. Each item costs $1 for 

𝐺1

and $2 for 𝐺2

. Use Lagrange multipliers to find the maximum value of U if the 

consumer’s income is $83. Estimate the new optimal utility if the consumer’s income rises 

by $1


1
Expert's answer
2021-03-08T07:20:11-0500

u(X1X2)=2X1X2+3X1u(X1X2)= 2X1X2+3X1

where G1=$1, G2=$2 and B=$83


forming the budget constraint:

B=G1X1+G2X2B=G1X1+G2X2

83=X1+2X2


U=2X1X2+3X1+λλ(83X12X2)U=2X1X2+3X1+\lambdaλ(83-X1-2X2)


UX1=2X2+3λ=0..................(i)UX1=2X2+3-\lambda=0 ..................(i)

UX2=2X12λ=0..................(ii)UX2=2X1-2\lambda=0 ..................(ii)

Uλ=83X1+2X2=0..............(iii)U\lambda=83- X1+2X2=0 ..............(iii)


solving simultaneously:X1=43 ; X2=20 λ=43\lambda =43

substituting the values into the Lagrangian function


U=2(43)(20)+3(43)+43(83432(20))U=2(43)(20)+3(43)+43(83-43-2(20))

U=2(860)+3(43)+43(0)U=2(860)+3(43)+43(0)

U=1720+129+0U=1720+129+0

U=1849U= 1849

if the consumer's income increases by $1, the new budget becomes $84 and the new budget constraint becomes: 84=X84=X1 +2XX2


84X84-X1 2-2 XX2

U=2X1X2+3X1+λ(84X12X2)U=2X1X2+3X1+\lambda(84-X1-2X2)

UX1=2X1X2+3λ=0...........(i)UX1=2X1X2+3-\lambda=0 ...........(i)

UX2=2X12λ=0..................(ii)UX2=2X1-2\lambda=0 ..................(ii)

Uλ=84X1+2X2=0............(iii)U\lambda=84 - X1+2X2=0 ............(iii)

Solving simultaneously: X1=43.5 ; X2=20.25 and λ\lambda = 43.5


substituting the values into the Lagrangian function gives the new utility as:

U=2(43.5)(20.25)+3(43.5)+43.5(8343.52(20.25))U=2(43.5)(20.25)+3(43.5)+43.5(83-43.5-2(20.25))

U=2(880.75)+3(43.5)+43.5(0)U=2(880.75)+3(43.5)+43.5(0)

U=1761.75+130.5+0U=1761.75+130.5+0

U=1892.25U= 1892.25


An increase of $1 in the income of the consumer will cause an approximate change of 43 as suggested by the lagrangian multiplier.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS