u(X1X2)=2X1X2+3X1
where G1=$1, G2=$2 and B=$83
forming the budget constraint:
B=G1X1+G2X2
83=X1+2X2
U=2X1X2+3X1+λλ(83−X1−2X2)
UX1=2X2+3−λ=0..................(i)
UX2=2X1−2λ=0..................(ii)
Uλ=83−X1+2X2=0..............(iii)
solving simultaneously:X1=43 ; X2=20 λ=43
substituting the values into the Lagrangian function
U=2(43)(20)+3(43)+43(83−43−2(20))
U=2(860)+3(43)+43(0)
U=1720+129+0
U=1849
if the consumer's income increases by $1, the new budget becomes $84 and the new budget constraint becomes: 84=X1 +2X2
84−X1 −2 X2
U=2X1X2+3X1+λ(84−X1−2X2)
UX1=2X1X2+3−λ=0...........(i)
UX2=2X1−2λ=0..................(ii)
Uλ=84−X1+2X2=0............(iii)
Solving simultaneously: X1=43.5 ; X2=20.25 and λ = 43.5
substituting the values into the Lagrangian function gives the new utility as:
U=2(43.5)(20.25)+3(43.5)+43.5(83−43.5−2(20.25))
U=2(880.75)+3(43.5)+43.5(0)
U=1761.75+130.5+0
U=1892.25
An increase of $1 in the income of the consumer will cause an approximate change of 43 as suggested by the lagrangian multiplier.
Comments