Question #166715

Let a consumer’s utility function be π‘ˆ = π‘ž1

6π‘ž2

4 + 1.5πΌπ‘›π‘ž1 + πΌπ‘›π‘ž2

and his budget constraint

3π‘ž1 + 4π‘ž2 = 100.

a. Find his optimum commodity bundle of π‘ž1

and π‘ž2

b. Verify whether second order is fulfilled or not. 

c. Determine the marginal utility of money

d. Estimate the new optimal utility if the consumer’s income rises by ₦1


1
Expert's answer
2021-03-02T07:46:32-0500
Ξ΄UΞ΄q1=6q15q24+1.5q1\frac{\delta U}{\delta q_1}=6q_1^5q_2^4+\frac{1.5}{q_1}

Ξ΄UΞ΄q2=4q16q23+1q2\frac {\delta U}{\delta q_2}=4q_1^6q_2^3+\frac{1}{q_2}

6q15q24+1.5q13=4q16q23+1q24\frac{6q_1^5q_2^4+\frac{1.5}{q_1}}{3}=\frac {4q_1^6q_2^3+\frac{1}{q_2}}{4}


q1=20q_1=20

q2=10q_2=10

3Γ—10+4Γ—20=1003\times10+4\times20=100

Ξ»=9.6Γ—1010\lambda=9.6\times10^{10}

If I=101

Since the growth in consumer income is relatively small compared to previous income, the Lagrange multiplier will not change significantly.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS