a) What output mix should a profit-maximazing firm produce when its total profit function is
π = 40π₯ β 2π₯ ΰ¬Ά β π₯π¦ β 3π¦ ΰ¬Ά + 100π¦ and its maximum output capacity is π₯ + π¦ = 15 ?
b) Estimate the effect on profits if output capacity is expanded by 1 unit.Β
a) What output mix should a profit-maximazing firm produce
π = 40π₯ β 2π₯2 β π₯π¦ β 3π¦2 + 100π¦
s.t π₯ + π¦ = 15
Lang. max = "40\ud835\udc65 \u2212 2\ud835\udc65^2 \u2212 \ud835\udc65\ud835\udc66 \u2212 3\ud835\udc66^2 + 100\ud835\udc66+\\lambda(15-x-y)"
"\\frac{\\delta L}{\\delta x}=0 \\implies 40-4x-y=\\lambda---------(1)\\\\\n\\frac{\\delta L}{\\delta x}=0 \\implies -x-6y+100=\\lambda--------(2)\\\\\n\\frac{\\delta L}{\\delta x}= 0 \\implies x+y=15------------(3)"
Solving (1) and (2) yields
"40-4x-y=-x-6y+100\\\\\n5y-3x=60-----------------(4)"
Solving (3) and (4) yields
"5(15-x)-3x=60 \\implies 75-5x-3x=60\\\\\n\\therefore -8x=60-75\\\\\n-8x=-15\\\\\nx=1.875\\\\\ny=15-1.875\\\\\ny=13.125"
Hence total profit is;
"\\pi=40(1.875)+2(1.875)^2-(1.875)(13.125)-3(13.125)^2+100(13.125)\\\\\n\\pi=853.125"
b) Estimate the effect on profits if output capacity is expanded by 1 unit.
"x+y=16------------------(5)"
Solving (4) and (5) yields
"5(16-x)-3x=60 \\implies 80-5x-3x=60\\\\\n\\therefore -8x=60-80\\\\\n-8x=-20\\\\\nx=2.5\\\\\ny=15-2.5\\\\\ny=12.5"
Hence the total profit in this case is;
"\\pi=40(2.5)+2(2.5)^2-(2.5)(12.5)-3(12.5)^2+100(12.5)\\\\\n\\pi=862.5"
Comments
Leave a comment