a) What output mix should a profit-maximazing firm produce
𝜋 = 40𝑥 − 2𝑥2 − 𝑥𝑦 − 3𝑦2 + 100𝑦
s.t 𝑥 + 𝑦 = 15
Lang. max = 40x−2x2−xy−3y2+100y+λ(15−x−y)
δxδL=0⟹40−4x−y=λ−−−−−−−−−(1)δxδL=0⟹−x−6y+100=λ−−−−−−−−(2)δxδL=0⟹x+y=15−−−−−−−−−−−−(3)
Solving (1) and (2) yields
40−4x−y=−x−6y+1005y−3x=60−−−−−−−−−−−−−−−−−(4)
Solving (3) and (4) yields
5(15−x)−3x=60⟹75−5x−3x=60∴−8x=60−75−8x=−15x=1.875y=15−1.875y=13.125
Hence total profit is;
π=40(1.875)+2(1.875)2−(1.875)(13.125)−3(13.125)2+100(13.125)π=853.125
b) Estimate the effect on profits if output capacity is expanded by 1 unit.
x+y=16−−−−−−−−−−−−−−−−−−(5)
Solving (4) and (5) yields
5(16−x)−3x=60⟹80−5x−3x=60∴−8x=60−80−8x=−20x=2.5y=15−2.5y=12.5
Hence the total profit in this case is;
π=40(2.5)+2(2.5)2−(2.5)(12.5)−3(12.5)2+100(12.5)π=862.5
Comments