Question #161656

a) What output mix should a profit-maximazing firm produce when its total profit function is

𝜋 = 40𝑥 − 2𝑥 ଶ − 𝑥𝑦 − 3𝑦 ଶ + 100𝑦 and its maximum output capacity is 𝑥 + 𝑦 = 15 ?

b) Estimate the effect on profits if output capacity is expanded by 1 unit. 


1
Expert's answer
2021-02-10T21:42:35-0500

Solution

a) What output mix should a profit-maximazing firm produce

𝜋 = 40𝑥 − 2𝑥2 − 𝑥𝑦 − 3𝑦2 + 100𝑦

s.t 𝑥 + 𝑦 = 15


Lang. max = 40𝑥2𝑥2𝑥𝑦3𝑦2+100𝑦+λ(15xy)40𝑥 − 2𝑥^2 − 𝑥𝑦 − 3𝑦^2 + 100𝑦+\lambda(15-x-y)

δLδx=0    404xy=λ(1)δLδx=0    x6y+100=λ(2)δLδx=0    x+y=15(3)\frac{\delta L}{\delta x}=0 \implies 40-4x-y=\lambda---------(1)\\ \frac{\delta L}{\delta x}=0 \implies -x-6y+100=\lambda--------(2)\\ \frac{\delta L}{\delta x}= 0 \implies x+y=15------------(3)


Solving (1) and (2) yields

404xy=x6y+1005y3x=60(4)40-4x-y=-x-6y+100\\ 5y-3x=60-----------------(4)

Solving (3) and (4) yields

5(15x)3x=60    755x3x=608x=60758x=15x=1.875y=151.875y=13.1255(15-x)-3x=60 \implies 75-5x-3x=60\\ \therefore -8x=60-75\\ -8x=-15\\ x=1.875\\ y=15-1.875\\ y=13.125


Hence total profit is;

π=40(1.875)+2(1.875)2(1.875)(13.125)3(13.125)2+100(13.125)π=853.125\pi=40(1.875)+2(1.875)^2-(1.875)(13.125)-3(13.125)^2+100(13.125)\\ \pi=853.125


b) Estimate the effect on profits if output capacity is expanded by 1 unit.

x+y=16(5)x+y=16------------------(5)

Solving (4) and (5) yields

5(16x)3x=60    805x3x=608x=60808x=20x=2.5y=152.5y=12.55(16-x)-3x=60 \implies 80-5x-3x=60\\ \therefore -8x=60-80\\ -8x=-20\\ x=2.5\\ y=15-2.5\\ y=12.5

Hence the total profit in this case is;

π=40(2.5)+2(2.5)2(2.5)(12.5)3(12.5)2+100(12.5)π=862.5\pi=40(2.5)+2(2.5)^2-(2.5)(12.5)-3(12.5)^2+100(12.5)\\ \pi=862.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS