Answer to Question #150830 in Microeconomics for Ben

Question #150830
The demand curve function of a monopolist is given by P= 100 - 2Q. If the marginal cost is constant and is equal to 20, what is the amount of profit made?
1
Expert's answer
2020-12-15T07:22:16-0500

Solution:

P=1002QP=100-2Q

Derive MR:

R=(100)×(Q)(2Q)(Q)=100Q2Q2R=(100)\times (Q)- (2Q)(Q) = 100Q-2Q^{2}


MR=dRdQ=1004QMR=\frac{dR}{dQ} = 100-4Q


MC=20MC =20

MR=MCMR=MC


1004Q=20100-4Q=20


4Q=100204Q=100-20

4Q=804Q=80


Q=804=20Q=\frac{80}{4} = 20

Q=20Q=20

Substitute to get the price:

P=100(2)×(20)=10040=60P=100-(2)\times (20) =100-40=60

P=60P=60


Derive Total Revenue (TR) and Total Cost (TC):

TR=(60  per  unit)×(20  units  per  unit)=1,200TR=(60\; per\; unit)\times (20 \;units\; per\; unit) = 1,200


TC=(10  per  unit)×(20  units  per  unit)=200TC=(10\; per\; unit)\times (20 \;units\; per\; unit) = 200


Profit=TRTC=1,200200=1,000Profit=TR-TC=1,200-200 = 1,000


Profit  made=1,000Profit \;made = 1,000



Profit made = 1,000







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment