"f(z) = 2z^{\\frac{1}{2}}"
Let:
price of input = r
price of output = p
Profit = Total revenue (TR) – Total cost (TC)
"Profit = p \\times 2z^{\\frac{1}{2}} \u2013 (rz) = 2pz^{\\frac{1}{2}} \u2013 rz"
To find optimal profit we will differentiate profit function with respect to z.
"\\frac{d(profit)}{dz} = 2p \\times \\frac{1}{2\\sqrt{z}} \u2013 r = 0 \\\\\n\n2p = r2\\sqrt{z} \\\\\n\np = r\\sqrt{z} \\\\\n\nZ^* = (\\frac{p}{r})^2"
Optimal input:
"Z^* = \\frac{p^2}{r^2} \\\\\n\nOutput = f(z) = 2(Z^*)^{\\frac{1}{2}} \\\\\n\n= 2(\\frac{p}{r})^{2 \\times \\frac{1}{2}} \\\\\n\n= 2\\frac{p}{r} \\; (optimal \\; output) \\\\\n\nProfit = 2p(\\frac{p}{r})^{2 \\times \\frac{1}{2}} \u2013 r(\\frac{p^2}{r^2}) \\\\\n\n= 2p(\\frac{p}{r}) \u2013 r \\frac{p^2}{r^2} \\\\\n\n= 2\\frac{p^2}{r} - \\frac{p^2}{r} \\\\\n\n= \\frac{p^2}{r} \\; (optimal \\; profit)"
Comments
Leave a comment