Question #148000
A firm has production function f(z) = 2z
1/2 The price of the input is r and the price of
output is p.
a) Calculate the optimal output, input, and profit?
1
Expert's answer
2020-12-04T05:16:08-0500

f(z)=2z12f(z) = 2z^{\frac{1}{2}}

Let:

price of input = r

price of output = p

Profit = Total revenue (TR) – Total cost (TC)

Profit=p×2z12(rz)=2pz12rzProfit = p \times 2z^{\frac{1}{2}} – (rz) = 2pz^{\frac{1}{2}} – rz

To find optimal profit we will differentiate profit function with respect to z.

d(profit)dz=2p×12zr=02p=r2zp=rzZ=(pr)2\frac{d(profit)}{dz} = 2p \times \frac{1}{2\sqrt{z}} – r = 0 \\ 2p = r2\sqrt{z} \\ p = r\sqrt{z} \\ Z^* = (\frac{p}{r})^2

Optimal input:

Z=p2r2Output=f(z)=2(Z)12=2(pr)2×12=2pr  (optimal  output)Profit=2p(pr)2×12r(p2r2)=2p(pr)rp2r2=2p2rp2r=p2r  (optimal  profit)Z^* = \frac{p^2}{r^2} \\ Output = f(z) = 2(Z^*)^{\frac{1}{2}} \\ = 2(\frac{p}{r})^{2 \times \frac{1}{2}} \\ = 2\frac{p}{r} \; (optimal \; output) \\ Profit = 2p(\frac{p}{r})^{2 \times \frac{1}{2}} – r(\frac{p^2}{r^2}) \\ = 2p(\frac{p}{r}) – r \frac{p^2}{r^2} \\ = 2\frac{p^2}{r} - \frac{p^2}{r} \\ = \frac{p^2}{r} \; (optimal \; profit)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS