As per the given question,
"y=x_1 x_2"
Now,
"L=w_1x_1+w_2x_2+\\lambda(y-x_1x_2)"
"0=\\frac{dy}{d\\lambda}=y-x_1x_2"
"0=\\frac{dy}{d\\lambda}=w_1-\\lambda x_2"
"0=\\frac{dy}{d\\lambda}=w_2-\\lambda x_2"
So, "\\lambda = \\frac{w_1}{x_2}=\\frac{w_2}{x_1}"
We know that "4=w_1x_1+w_2x_2"
"4=w_1x_1+\\frac{w_1\\times x_1}{w_2}w_2"
"x_1=\\frac{4}{2w_1}=\\frac{2}{w_1}"
"x_2=\\frac{2}{w_2}"
Hence, "y=x_1 x_2"
"y=\\frac{2\\times 2}{w_1\\times w_2}"
"y=4"
Comments
Leave a comment