Reaction function of firm1:
"2Q{_1}+Q{_2}=\\frac{a-C{_2}}{b}"
Reaction function of firm2:
"Q{_1} - 2Q{_2} = \\frac{(a - C2)}{b}"
Explanation:
Demand function:
P = a - bQ
Q = Q1 + Q2
Thus,
P = a - b(Q1 + Q2)
MC1 = C1
TC = C1Q1
MC2 = C2
TC2 = C2Q2
Profit of the firm 1:
Profit1 = TR1 - TC1
= PQ1 - C1Q1
= [a - b(Q1 + Q2)]Q1 - C1Q1
=aQ1 - b(Q1)2 - bQ1Q2 - C1Q1
dProfit1/dQ1 = a - 2bQ1 - bQ2 - C1
dProfit1/dQ1 = 0
a - 2bQ1 - bQ2 - C1 = 0
2Q1 + Q2 = (a - C1)/b ... (Reaction function of firm 1)
This reaction function shows that optimal quantity of the firm 1 depends on the optimal quantity of the firm two.
Putting the given information in the reaction function of firm 1 as follows:
"2Q{_1} + Q{_2} = \\frac{(a - C1)}{b }"
"2Q{_1} + 100 = \\frac{(4 - 2)}{0.01}"
2Q1 = 200
Q1 = 100
Thus, if firm 2 produces the 100 units then the firm 1 will produce 100 units.
Profit of the firm 2:
Profit2 = TR2 - TC2
= PQ2 - C2Q2
= [a - b(Q1 + Q2)]Q2 - C2Q2
=aQ2 - bQ1Q2 - b(Q2)2 - C2Q2
dProfit2/dQ2 = a - bQ1 - 2bQ2 - C2
dProfit2/dQ2 = 0
a - bQ1 - 2bQ2 - C2 = 0
Q1 - 2Q2 = (a - C2)/b ... (Reaction function of firm 2)
Comments
Leave a comment