Question #138024
The utility function of the consumer is 5x
0.5y
0.5

The income of the consumer is 5000
The price of good x is 1,000 and the price of good y is 500.
Determine the optimal consumption bundle.
1
Expert's answer
2020-10-20T06:28:50-0400

Solution:

Utility Function:U(x,y)=5x0.5y0.5U_(x,y) =5x^{0.5} y^{0.5}


MRSx,y=MUxMUy  where  MUx=dUdy=2.5x0.5y0.5MRS_{x,y} =\frac{MUx}{MUy} \;where\;MUx=\frac{dU}{dy} =2.5x^{-0.5} y^{0.5}


where  MUy=dUdy=0.5x0.5y0.5where\;MUy=\frac{dU}{dy} =0.5x^{0.5} y^{-0.5}


MRSx,y=MUxMUyMRS_{x,y} =\frac{MUx}{MUy}


=2.5x0.5y0.50.5x0.5y0.5=2.5x(yx)0.50.5x(xy)0.5=5(yx)=\frac{2.5x^{-0.5} y^{0.5} }{0.5x^{0.5} y^{-0.5} } =\frac{2.5x(\frac{y}{x} )^{0.5} }{0.5x(\frac{x}{y}) ^{0.5}}=5(\frac{y}{x})


MRS=5(yx)MRS=5(\frac{y}{x})


We  know  that  MRS=PxPyWe \;know\; that\; MRS=\frac{Px}{Py}


5(yx)=10005005(\frac{y}{x})=\frac{1000}{500}


5(yx)=25(\frac{y}{x})=2


y=25xy=\frac{2}{5} x


Plug this into the budget line:

Budget Line:


I=PxX+PyYI=PxX+PyY

5000=1000X+500Y5000=1000X+500Y

5000=1000X+500(25x)5000=1000X+500(\frac{2}{5} x)


5000=1000X+200X5000=1000X+200X

5000=1200X5000=1200X

X=50001200X=\frac{5000}{1200}


X=4.17X=4.17


Plug X into the budget line to get the value of Y:


5000=1000X+500Y5000=1000X+500Y

5000=1000(4.17)+500Y5000=1000(4.17) +500Y

5000=4170+500Y5000=4170 +500Y

50004170=500Y5000-4170=500Y

830=500Y830=500Y


Y=830500Y=\frac{830}{500}


Y=1.66Y=1.66


The optimum consumption bundle is therefore (x,y) = (4.17, 1.66)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS