Solution:
Utility Function:"U_(x,y) =5x^{0.5} y^{0.5}"
"MRS_{x,y} =\\frac{MUx}{MUy} \\;where\\;MUx=\\frac{dU}{dy} =2.5x^{-0.5} y^{0.5}"
"where\\;MUy=\\frac{dU}{dy} =0.5x^{0.5} y^{-0.5}"
"MRS_{x,y} =\\frac{MUx}{MUy}"
"=\\frac{2.5x^{-0.5} y^{0.5} }{0.5x^{0.5} y^{-0.5} } =\\frac{2.5x(\\frac{y}{x} )^{0.5} }{0.5x(\\frac{x}{y}) ^{0.5}}=5(\\frac{y}{x})"
"MRS=5(\\frac{y}{x})"
"We \\;know\\; that\\; MRS=\\frac{Px}{Py}"
"5(\\frac{y}{x})=\\frac{1000}{500}"
"5(\\frac{y}{x})=2"
"y=\\frac{2}{5} x"
Plug this into the budget line:
Budget Line:
"I=PxX+PyY"
"5000=1000X+500Y"
"5000=1000X+500(\\frac{2}{5} x)"
"5000=1000X+200X"
"5000=1200X"
"X=\\frac{5000}{1200}"
"X=4.17"
Plug X into the budget line to get the value of Y:
"5000=1000X+500Y"
"5000=1000(4.17) +500Y"
"5000=4170 +500Y"
"5000-4170=500Y"
"830=500Y"
"Y=\\frac{830}{500}"
"Y=1.66"
The optimum consumption bundle is therefore (x,y) = (4.17, 1.66)
Comments
Leave a comment