Question #135870
21. A firm operates in a perfectly competitive market. The market price of its product is 4
birr and the total cost function is given by: TC= 1/3Q3-5Q2+50,
a. What level of output should the firm produce to maximize its profit?
b. Determine the level of profit at equilibrium.
c. What minimum price is required by the firm to stay in the market?
1
Expert's answer
2020-10-12T07:35:47-0400

a) Answer\bold {Answer}

Output, Q=11 unitsQ = 11 \space units


Solution\bold {Solution}

Perfectly competitive firms are price takers, therefore the firm's price = market price = 4 birr.


 TR=4Q birr\therefore \space TR = 4Q \space birr

Profit, π=TRTCπ = TR - TC

π=4Q(13Q35Q2+50)π = 4Q - \big(\dfrac {1}{3}Q^3 -5Q^2 +50 \big)

=4Q13Q3+5Q250=4Q - \dfrac {1}{3} Q^3 +5Q^2 -50


=13Q3+5Q2+4Q50=-\dfrac {1}{3}Q^3 +5Q^2 +4Q -50


For maximum profit, we apply differential calculus:

dπdQ=ddQ(13Q3+5Q2+\dfrac {dπ}{dQ} = \dfrac {d}{dQ} \big(-\dfrac {1}{3} Q^3 +5Q^2+


4Q50)4Q-50 \big)

=Q2+10Q+4= -Q^2 + 10Q + 4


When π is maximum, dπdQ=0\dfrac {dπ}{dQ} = 0


Therefore, Q2+10Q+4=0-Q^2 +10Q + 4 = 0


=>Q210Q4=0=> Q^2 -10 Q - 4 = 0


=>Q=(10)±(10)24(1)(4)2(1)=> Q = \dfrac {-(-10) \pm \sqrt {(-10)^2 -4(1)(-4)}}{2(1)}


=>Q=10±1162=> Q = \dfrac {10 \pm \sqrt {116}}{2}


=20.7703296142=\dfrac { 20.770329614}{2}

=10.385164807= 10.385164807


 11 \approx \space 11 \space unitsunits


b) Answer\bold {Answer}

Profit, π=155.33 birrπ = 155.33 \space birr


Solution\bold {Solution}

At equilibrium, MR = MC and π is maximum. Therefore, at the equilibrium point, Q = 11 units.


π=13Q3+5Q2+4Q50π = -\dfrac {1}{3} Q^3 + 5Q^2 + 4Q -50


=13(11)3+5(11)2+4(11)50= -\dfrac {1}{3}(11)^3 +5(11)^2 +4(11) -50


=13(1331)+5(121)+4450=- \dfrac {1}{3}(1331)+5(121)+44-50


=443.66666667+6056= -443.66666667 + 605 -6


=155.3333333333 birr= 155.3333333333 \space birr


=155.33 birr= 155.33 \space birr



c) Answer\bold {Answer}


Minimum price, P=18.75 birrP = -18.75 \space birr


Solution\bold {Solution}

For a firm to continue operating, the price (AR) must at least cover all AVC. Therefore, the minimum acceptable price = minimum AVC.


Now, TC=13Q35Q2+50TC = \dfrac {1}{3}Q^3 -5Q^2 + 50


From the TC:


TFC=50 birrTFC = 50 \space birr


TVC=13Q35Q2TVC = \dfrac {1}{3}Q^3 -5Q^2


AVC=TVCQAVC = \dfrac {TVC}{Q}


=13Q35Q2Q= \dfrac {\dfrac {1}{3}Q^3-5Q^2}{Q}


=13Q25Q= \dfrac {1}{3}Q^2 -5Q


For minimum AVC, differential calculus is applied:

ddQ(AVC)=ddQ(13Q25Q)\dfrac {d}{dQ}(AVC) = \dfrac {d}{dQ} \big(\dfrac {1}{3}Q^2 - 5 Q \big)


=23Q5= \dfrac {2}{3} Q - 5


At the minimum point:

ddQ(AVC)=0\dfrac {d}{dQ} (AVC) = 0


=>23Q5=0=> \dfrac {2}{3}Q - 5 = 0


=>2Q15=0=> 2Q - 15 =0


=>Q=152=> Q = \dfrac {15}{2}


 Q=7.5 units\therefore \space Q = 7.5 \space units


Thus, AVC=13(7.5)25(7.5)AVC = \dfrac {1}{3}(7.5)^2 -5(7.5)

=18.7537.5= 18.75 - 37.5


=18.75 birr= -18.75 \space birr

(We assume negative prices exist).


 P18.75 birr\therefore \space P \geq -18.75 \space birr


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS