Question #135165
When the price of a commodity is $.10, an individual buys 40 units of it. When the price falls to $.8 what would be elasticity of demand, if demand increase to (i)44 units, (ii) 50 units ?
1
Expert's answer
2020-09-30T13:04:39-0400

Answers\bf Answers

(a) ηp=0.4(a) \space \eta_{p} = -0.4  (Inelastic)\space (Inelastic)


(b) ηp=1(b) \space \eta_{p} = -1  (Unitary)\space (Unitary)


Solutions\bf Solutions

We are given:

P0=$10,Q0=40 units, andP1=$8P_{0} = \$10, \\ Q_{0} = 40 \space units, \space and \\ P_{1} = \$8


PED(ηp)=% ∆ in Quantity demanded% ∆ in pricePED (\eta_{p}) = \dfrac {\% \space ∆ \space in \space Quantity \space demanded} {\% \space ∆ \space in \space price}


% ∆ in price=(810)8×100%\% \space ∆ \space in \space price = \dfrac {(8-10)}{8} × 100\%


=28×100%= \dfrac {-2}{8} × 100\%


=25%= -25\%


(a) Q1=44 units(a) \space Q_{1} = 44 \space units \\


% ∆ in quantity demanded\% \space ∆ \space in \space quantity \space demanded


=(4440)40×100%= \dfrac {(44 - 40)}{40} × 100\%


=440×100%= \dfrac {4}{40}×100\%


=+10%= +10\%


ηp=10%25%\eta_{p} = -\dfrac {10\%}{25\%}


=0.4 (Inelastic)=\bf -0.4 \space (Inelastic)


(b) Q1=50 units(b) \space Q_{1} = 50 \space units


% ∆ in quantity demanded\% \space ∆ \space in \space quantity \space demanded


=(5040)40×100%= \dfrac {(50-40)}{40}×100\%


=1040×100%= \dfrac {10}{40}×100\%


=+25%= +25\%


ηp=25%25%\eta_{p} = -\dfrac {25\%}{25\%}


=1(Unitary)= \bf -1 (Unitary)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS