Question #133315
The respective elasticities of demand and supply for a product are -0.55 and 1. Further, it is observed that the price of this commodity is $80 whilst the prevailing quantity in the market is 950. By adopting a demand and supply concept of

Qd = a + bP
Qs = c + dP use the information provided to estimate the values of a,b,c and d.
1
Expert's answer
2020-09-24T11:05:19-0400

price elasticity of demand=QdPPQd\dfrac{\triangle Q^d}{\triangle P}*{P \over Q^d}

0.55=\Rightarrow -0.55= QdP80950\dfrac{\triangle Q^d}{\triangle P}*{80 \over 950}

\Rightarrow QdP\dfrac{\triangle Q^d}{\triangle P} =-0.55*80950{80 \over 950}

=-6.53125

Qd=a+bPQ^d= a+ bP

\Rightarrow QdP\dfrac{\triangle Q^d}{\triangle P} =b=b

\therefore b=6.53125b=-6.53125

Qd=a+(6.53125)p\Rightarrow Q^d = a+ (-6.53125)p

taking p =80, Qd =950

950=a+(6.51325)(80)\Rightarrow 950=a+(-6.51325)(80)

950 =a-522.5

a=950+522.5

a=1472.5

Qd =1472.5 -6.51325P


price elasticity of supply =QsPPQs=\dfrac{\triangle Q^s}{\triangle P}*{P \over Q^s}

1=QdP80950\Rightarrow 1=\dfrac{\triangle Q^d}{\triangle P}*{80 \over 950}

QsP=95080\Rightarrow \dfrac{\triangle Q^s}{\triangle P}={950 \over 80}

=11.875

Qs=c+dPQ^s =c +dP

\Rightarrow QsP=d\Rightarrow \dfrac{\triangle Q^s}{\triangle P} =d

\therefore d=11.875

Qs=c+11.875pQ^s =c +11.875p

At p =80 , Qs=950Q^s =950

950=c +11.875(80)

950=c+950

c=950-950

c=0

so Qs =0+11.875p

Qs =11.875p

a=1472.5,b=6.53125,c=0,d=11.875\therefore a=1472.5 , b=-6.53125 , c=0 ,d =11.875




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Jennifer
24.09.20, 19:07

Well calculated and very detailed. Thank you!

LATEST TUTORIALS
APPROVED BY CLIENTS