Question #133121
Minimize Q=1159+2L^0.5+5K^0.5 using Lagrangian method and constraint 1200=20L+30K
1
Expert's answer
2020-09-15T10:10:27-0400
SolutionSolution

maximizing

Q=f(L,K)=1159+2L0.5+5K0.5Q=f(L,K)=1159+2L^{0.5}+5K^{0.5}

Subject to the constraint

20L+30K=120020L+30K=1200

Step 1: Create a new Lagrangian equation from the original information;

The Lagrangian is



θ=f(L,K)=1159+2L0.5+5K0.5+λ(120020L30K)\theta=f(L,K)=1159+2L^{0.5}+5K^{0.5}+\lambda (1200-20L-30K)

Step 2: Then follow the same steps as used in regular minimization problem.


The first order conditions are;

δθδL=θL=l0.520λ=0δθδK=θK=2.5K0.530λ=0δθδλ=120020L30K=0\frac{\delta \theta}{\delta L}=\theta_L=l^{-0.5}-20\lambda=0\\ \frac{\delta \theta}{\delta K}=\theta_K=2.5K^{-0.5}-30\lambda=0\\ \frac{\delta \theta}{\delta \lambda}=1200-20L-30K=0\\

From the first two equations we get


3L0.5=5K0.55L0.5=3K0.5L=155K3L^{-0.5}=5K^{-0.5}\\ 5L^{0.5}=3K^{0.5}\\\\ L=\frac{\sqrt{15}}{5}K

Substitute this result into the third equation


120020(155)30K=0K=3.4841200-20(\frac{\sqrt{15}}{5})-30K=0\\ K=3.484

Therefore


L=2.699, λ=0.03L=2.699,\ \lambda=0.03

Therefore, the combination 2.699 units2.699\ units of labor and 3.383 units3.383\ units of capital minimize the total cost of producing 1,200 units1,200\ units . In addition, λλ equals 0.030.03 .If the firm wants to produce one more unit of the good, the total cost increases by $0.03.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS