S o l u t i o n Solution S o l u t i o n maximizing
Q = f ( L , K ) = 1159 + 2 L 0.5 + 5 K 0.5 Q=f(L,K)=1159+2L^{0.5}+5K^{0.5} Q = f ( L , K ) = 1159 + 2 L 0.5 + 5 K 0.5 Subject to the constraint
20 L + 30 K = 1200 20L+30K=1200 20 L + 30 K = 1200 Step 1: Create a new Lagrangian equation from the original information;
The Lagrangian is
θ = f ( L , K ) = 1159 + 2 L 0.5 + 5 K 0.5 + λ ( 1200 − 20 L − 30 K ) \theta=f(L,K)=1159+2L^{0.5}+5K^{0.5}+\lambda (1200-20L-30K) θ = f ( L , K ) = 1159 + 2 L 0.5 + 5 K 0.5 + λ ( 1200 − 20 L − 30 K )
Step 2: Then follow the same steps as used in regular minimization problem.
The first order conditions are;
δ θ δ L = θ L = l − 0.5 − 20 λ = 0 δ θ δ K = θ K = 2.5 K − 0.5 − 30 λ = 0 δ θ δ λ = 1200 − 20 L − 30 K = 0 \frac{\delta \theta}{\delta L}=\theta_L=l^{-0.5}-20\lambda=0\\
\frac{\delta \theta}{\delta K}=\theta_K=2.5K^{-0.5}-30\lambda=0\\
\frac{\delta \theta}{\delta \lambda}=1200-20L-30K=0\\ δ L δ θ = θ L = l − 0.5 − 20 λ = 0 δK δ θ = θ K = 2.5 K − 0.5 − 30 λ = 0 δ λ δ θ = 1200 − 20 L − 30 K = 0 From the first two equations we get
3 L − 0.5 = 5 K − 0.5 5 L 0.5 = 3 K 0.5 L = 15 5 K 3L^{-0.5}=5K^{-0.5}\\
5L^{0.5}=3K^{0.5}\\\\
L=\frac{\sqrt{15}}{5}K 3 L − 0.5 = 5 K − 0.5 5 L 0.5 = 3 K 0.5 L = 5 15 K Substitute this result into the third equation
1200 − 20 ( 15 5 ) − 30 K = 0 K = 3.484 1200-20(\frac{\sqrt{15}}{5})-30K=0\\
K=3.484 1200 − 20 ( 5 15 ) − 30 K = 0 K = 3.484 Therefore
L = 2.699 , λ = 0.03 L=2.699,\ \lambda=0.03 L = 2.699 , λ = 0.03
Therefore, the combination 2.699 u n i t s 2.699\ units 2.699 u ni t s of labor and 3.383 u n i t s 3.383\ units 3.383 u ni t s of capital minimize the total cost of producing 1 , 200 u n i t s 1,200\ units 1 , 200 u ni t s . In addition, λ λ λ equals 0.03 0.03 0.03 .If the firm wants to produce one more unit of the good, the total cost increases by $0.03.
Comments