(a)
p1=q2−450+2(q1−450+2p1)p1=q2−450+2(q1−450+2p1)p1=q2−450+2(q1−450+2p1)
p1=q2−450+2q1−900+4p1p1=q2−450+2q1−900+4p1p1=q2−450+2q1−900+4p1
3p1=1350−q2−2q13p1=1350−q2−2q13p1=1350−q2−2q1
p1=450−13q2−23q1p1 = 450 - \frac{1}{3} q2 - \frac{2}{3}q1p1=450−31q2−32q1
(b)
p2=q1−450+2(q2−450−2p2)p2 = q1-450+2(q2-450-2p2)p2=q1−450+2(q2−450−2p2)
p2=q1−450+2q2−900−4p2p2=q1−450+2q2−900−4p2p2=q1−450+2q2−900−4p2
3p2=1350−q1−q23p2 = 1350 - q1 - q23p2=1350−q1−q2
p2=450−13q1−23q2p2 = 450 - \frac{1}{3}q1 - \frac{2}{3} q2p2=450−31q1−32q2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment