If the utility function is U=AXaYbU = AX^aY^bU=AXaYb , then marginal utility functions for X and Y are:
MU(X)=U′(X)=A×a×Xa−1×Yb.MU(X) = U'(X) = A×a×X^{a - 1}×Y^b.MU(X)=U′(X)=A×a×Xa−1×Yb.
MU(Y)=U′(Y)=A×b×Xa×Yb−1.MU(Y) = U'(Y) = A×b×X^a×Y^{b - 1}.MU(Y)=U′(Y)=A×b×Xa×Yb−1.
MRS(XY)=MU(X)/MU(Y)=a×Xa−1×Ybb×Xa×Yb−1=aYbX=0.4×40.5×3=1.067.MRS(XY) = MU(X)/MU(Y) = \frac{a×X^{a - 1}×Y^b} {b×X^a×Y^{b - 1}} = \frac{aY}{bX} = \frac{0.4\times4}{0.5\times3} = 1.067.MRS(XY)=MU(X)/MU(Y)=b×Xa×Yb−1a×Xa−1×Yb=bXaY=0.5×30.4×4=1.067.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments